Introduction to CropWat

R. Balaghi*

	New Open Save	Close Print	Chart Options	3										
¥ Climate/E⊺o	Scheme Supply			Water Requirements					Сгор	Rice		_		23
Climate/El o	ETo station KURNO			ain station KURNC				F	Planting date	·	Сгор	ping pattern Kl	JRNOOL	
R			Mon	th Decade	Stage	Kc	ETc	ETc	Eff rain	Irr. Req.				
Rain		Jan	\neg			coeff	mm/day	mm/dec	mm/dec	mm/dec	Oct	Nov	Dec	-
	Precipitation deficit		- Jar		Nurs	1.20	0.52	1.5	0.0	1.5				
3	1. Rice	0.0	Fel		Nurs/LPr	1.16	1.86	18.6	1.1	108.4	83.2	20.2	0.0	
	2. Rice	0.0	Fel		Nurs/LPr	1.06	5.23	52.3	1.6	50.7	86.6	54.7	0.0	
Сгор	3. Rice	0.0	Fel		Init	1.07	5.61	44.9	1.3	225.4	88.4	99.8	0.0	
	4. Rice	0.0	Ma		Init	1.10	6.15	61.5	0.5	61.0	88.4	111.3	24.6	
146	5. Rice	145.0	Ma		Deve	1.10	6.53	65.3	0.1	65.2	0.0	128.8	264.3	
Soil	6. Rice	141.3	Ma		Deve	1.12	6.93	76.3	1.1	75.2	0.0	95.1	254.3	
501	7. Rice	138.5	Ар		Deve	1.16	7.43	74.3	1.4	72.8	0.0	0.0	309.1	
	8. COTTON	84.2	Ар		Mid	1.19	7.92	79.2	1.9	77.3	78.3	118.4	120.2	
1	9. Groudnut Kharif	0.0	Ар		Mid	1.20	8.49	84.9	5.6	79.3	41.3	2.5	0.0	
CWR	10. Groudnut Kharif	0.0	Ma		Mid	1.20	9.16	91.6	9.9	81.7	70.9	34.9	0.0	
	11. Groudnut Kharif	0.0	Ma	-	Mid	1.20	9.75	97.5	13.3	84.2	80.3	78.0	4.3	
	12. Groudnut Rabi	92.1	Ma		Late	1.20	9.36	102.9	15.9	87.0	0.0	0.0	23.4	
<u>W</u>	13. Groudnut Rabi	57.0	Jur		Late	1.17	8.67	86.7	18.5	68.2	0.0	0.0	0.0	
Schedule	14. Groudnut Rabi	28.4	Jur		Late	1.13	8.09	80.9	21.2	59.8	0.0	0.0	0.0	
	15. SORGHUM (Grain)	0.0	Jur	n 3	Late	1.09	7.33	51.3	16.5	27.7	49.7	16.5	0.0	
	16. SORGHUM (Grain)	0.0						1069.6	109.8	1225.4	61.2	61.9	0.0	
辩 Crop Pattern	17. Sugarcane (Ratoon)	50.0		·							79.1	89.1	83.4	
	Net scheme irr.req.													
*	in mm/day	2.5									2.5	2.8	2.8	
Scheme	in mm/month	79.0									77.6	84.4	85.5	
	in I/s/h	0.29									0.29	0.33	0.32	
ET	o file	Rain file		Crop file		Soil file		Plantir	ng date	Crop pa	it file	Sche	edule file	
kurn	nool.pen k	urn-av.crm		kurn-rice.cro		black clay so	il. soi	28	/02	rajoliban	da.pat			

* FAO consultant (<u>riad.balaghi@gmail.com</u>)

limpag

National Institute for Agricultural Research, Morocco (www.inra.org.ma)

CropWat

CropWat is a decision support system developed by FAO, having as main functions:

to calculate: reference evapotranspiration, crop water requirements, crop irrigation requirements;
 to develop: irrigation schedules under various management conditions, Scheme water supply;
 to evaluate: rainfed production and drought effects, efficiency of irrigation practices.

mpag

The water balance method is used for calculation of irrigation schedules in CROPWAT, which means that the incoming and outgoing water flows from the soil profile are monitored.

Data	Input	Output
Climatic	 Monthly means of min. and max. temperature, relative humidity, sunshine duration, wind speed Rainfall data Monthly 	 ✓ Reference Evapotranspiration ✓ crop water requirement irrigation requirement
Crop	Kc, crop description, max. rooting depth, % area covered by plant	 ✓ Actual crop Evapotranspiration ✓ Soil moisture deficit
Soil	 Initial soil moisture condition and available soil moisture 	 ✓ Estimated yield reduction due to crop
Irrigation	Irrigation scheduling Criteria	Stress ✓ Irrigation scheduling

Cimpag

□ Crop evapotranspiration or crop water requirements: This is defined as the daily water needs of the crop ;

Rainfall: Depending on the objective of the irrigation scheduling, monthly rainfall averages, rainfall at different levels of probability, historical data or actual data are used;
 Crop data: Data on rooting depth and allowable depletion are required. To assess the effect of water stress on yield, the yield response factor is also required;

impag

CropWat

□ **Soil data:** The soil parameters important for irrigation scheduling and required for irrigation scheduling using the FAO CROPWAT program are described below:

Total available soil moisture content (SMta), defined as the difference in soil moisture content between field capacity (FC) and wilting point (PWP). This is the total amount of water available to the crop and depends on texture, structure and organic matter content;

 Initial soil moisture depletion indicates the dryness of the soil at the start of irrigation. This is expressed as a depletion percentage from FC;

 Maximum rooting depth will in most cases be determined by the genetic characteristics of the plant. In some cases the root depth can be restricted by limiting layers ;

• Maximum rain infiltration rate allows for an estimate of the surface runoff for the effective rain calculation. This is a function of rain intensity, soil type and slope class.

Measuring and Coping With Climate Change And Its Impacts on Water and Agriculture in Northeast China, 01 March 2010. 5

Climpag

CropWat

CROPWAT - File Edit Ca	lculations	Charts	, 🖬	Window	-	ige Hel	P					Rainfall ii
	New	Open	Save	Close	Print	Unart	Options					dry years
¥ Climate/ETo												Defined as
R								Duvrir			:. 🛥	respective
Rain								-	rain rain T	ype Taille	☆	probability
🔹 Crop								() KUQA.cli () KURN-86.CRM				representi
*								KURN-AV.CRM KURN-DRY.CRM KURN-NOR.CRM				dry year. T
Soil								WKURN-WET.CRM				useful for t
ty CWR								Types de fichiers :	All rain files		•	irrigation s
DAN							T		August September			of irrigatio
Schedule 8									October November December			conditions
*									Total			years (50%
Crop Pattern												general, w
辩 Scheme												average ra
E) Fo file			Rain f	ile			Crop file	S	oil file	Plant	
	r 🕑 🌶	>	🕗 Gmail -	Boîte de r	éc	🔁 CROI	PWAT8.	0Examp 📔 Crop	Wat presentati	👔 FAO Tools	FA	AO CROPWAT 8.0

Jimpag

Rainfall in wet, normal and dry years:

Defined as the rainfall with a respectively 20, 50 and 80% probability of exceedance, representing a wet, normal and dry year. The three values are useful for the programming of irrigation supply and simulation of irrigation management conditions. The rainfall in normal years (50% probability) is, in general, well approached by the average rainfall.

schedule file

🚠 🚈 🕸 式 🛴 🕼 🏈 👘 🛃 🌵 20:41

Rainfall file

New

File Edit Calculations Charts Settings Window Language Help 1 ***** D Н <u>ڪ</u> 8 r

Save

Close

Open

₩. Climate/ETo

8

Rain

٠ Crop

緣 Soil

1

CWR

<u>W</u> Schedule

Crop Pattern

Effective rainfall:

Print

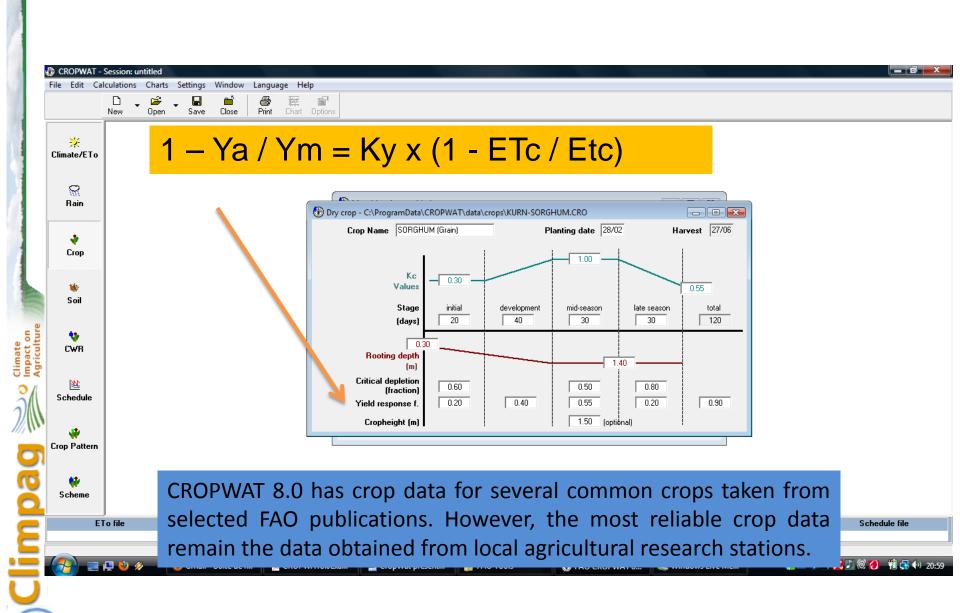
Chart Options

Defined as that part of the rainfall which is effectively used by the crop after rainfall losses due to surface run off and deep percolation have been accounted for. The effective rainfall is the rainfall ultimately used to determine the crop irrigation requirements.

onthiy rain - C:\P	ogrambata (entor i							
Station KUR	100L	Eff. rain method Fixed percentage						
		Rain	Eff rain]				
		mm	mm]				
	January	0.0	0.0					
	February	5.1	4.1					
	March	2.0	1.6					
	April	11.0	8.8					
	May	49.0	39.2					
	June	79.0	63.2					
	July	106.0	84.8					
	August	109.0	87.2					
	September	128.0	102.4					
	October	99.0	79.2					
	November	26.0	20.8					
	December	2.0	1.6					
	Total	616.1	492.9					

Data CRODWAT data (rain) KURNLAV CR

ba	辩 Scheme		requirement	:S.										
Ε	ET	o file	Rain file kurn-av.crm		Crop fil	e		Soil file	Planting	date	Crop pat file		Schedule file	
Ξ.		u 🔮 🏂	🍪 Gmail - Boîte de réc	🔁 CROP	PWAT8.0Examp	📑 CropWat p	presentati	FAO Tools	FAO 0	CROPWAT 8.0	FR	* ≣ \$	₹ <mark>८</mark> 200 10 10	20:40


Effective rainfall

□ To account for the losses due to runoff or percolation, a choice can be made of one of the four methods given in CROPWAT 8.0 (Fixed percentage, Dependable rain, Empirical formula, USDA Soil Conservation Service).

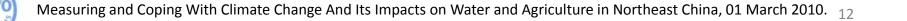
□ In general, the efficiency of rainfall will decrease with increasing rainfall. For most rainfall values below 100 mm/month, the efficiency will be approximately 80%. Unless more detailed information is available for local conditions, it is suggested to select the Option "Fixed percentage" and give 80% as requested value.

□ In the water balance calculations included in the irrigation scheduling part of CROPWAT, a possibility exists to evaluate actual Efficiency values for different crops and soil conditions.

Climpag 🖉

Soil file

CROPWAT - S	Corrign untitled		_ a _
	culations Charts Settings Window Language H	elp	
	New Open Save Close Print Chart	Options	
*			
Climate/ETo			
R			
Rain		Dry crop - C:\ProgramData\CROPWAT\data\crops\KURN-SORGHUM.CRO	
•		Crop Name SORGHUM (Grain) Planting date 28/02 Harvest 27/06	
Сгор		Soil - C:\ProgramData\CROPWAT\data\soils\BLACK CLAY SOIL.SOI	
		General soil data	
1990 Soil		Total available soil moisture (FC - WP) 200.0 mm/meter	
		Maximum rain infiltration rate 30 mm/day	
CWR		Maximum rooting depth 900 centimeters	
		Initial soil moisture depletion (as % TAM) 50 % Initial available soil moisture 100.0 mm/meter	
Schedule			
Schedule	The Soil module is es	sentially data input, requiring the following general soil data:	
. 🚸	Total Available Wate		
Crop Pattern			
•	Maximum infiltration		
Scheme	Maximum rooting of	•	
ET	 Initial soil moisture 	depletion	; file
	In case of rice calcula	tion, the following additional soil data are required:	l 🛃 🐠 21
	• Drainable porosity		
	Critical depletion for	or puddle cracking	
	Water availability a		
A			
<u>(</u>) N	• Maximum water de	ipui	10


http://www.fao.org/nr/water/infores_databases.html

text only version 🕨 print	helping to buil	helping to build a world without hunger				
) Water	NATURAL RESOURC	ES AND ENVIRO	NMENT DEPARTMEN			
FrontPage	Databases & Software					
Topics			SEARCH			
Information Resources	AQUACROP		安 RELATED LINKS			
Publications & CD-ROMs						
Graphs & Maps	AquaCrop is the FAO crop-model to simulate yield response to water of several herbaceous crops. It is	JIK	Who We Are			
Multimedia	designed to balance simplicity, accuracy and robustness, and is particularly suited to address		What We Do			
Video	conditions where water is a key limiting factor in crop		Topics: Irrigation			
Databases & Software	production. AquaCrop is a companion tool for a wide range of users and applications.	AQUACROP	Topics: Water Quality			
AquaCrop			Topics: Water Productivity			
CropWat	▶ Read more					
ClimWat			CONTACT US			
ETo Calculator	AQUASTAT					
Wastewater	AQUASTAT is FAO's global information system on water					
Promotional & Educational	and agriculture. It collects, analyses and disseminates data and					
Material	information by country and by region. Its aim is to					
Projects	provide users interested in global, regional and national analyses with comprehensive information related to	AQUASTAT				
Hot Issues	water resources and agricultural water management across the world, with emphasis on countries in Africa,					
	Asia, Latin America and the Caribbean.					
QUICKLINK TO 🔍	Among the information available: main country database; Databases on African dams, on institutions,					
Databases & Software	on river sediment yields, and on investment costs in					
Publications & CD-ROMs	irrigation					
Educational Material	View AQUASTAT Database					
Our Regional Offices						

Climate Impact on Agriculture

Jimpag

Demonstration on the computer !

Climpag

謝謝您 Thank you

