
Ecological Modelling 189 (2005) 72–88

Modeling population density using land cover data
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Abstract

This study investigates the correlation between land cover data and other factors that affect population distribution. The results
show that land cover data contain sufficient information to infer population distribution and can be used independently to model
the spatial pattern of population density in China. China’s population distribution model (CPDM) was developed based on land
cover data to calculate population density in China at 1 km resolution. For cells in rural areas, population probability coefficients
were calculated based on weighted linear models, the weights of land cover types being derived from multivariate regression
models and on a qualitative order of land types in 12 agro-ecological zones. For cells in urban areas, a power exponential decay
model based on city size and the distance from urban center was employed to calculate population probability coefficients. The
models were validated in sampled cells using ancillary population data. The validation shows the mean relative error of estimated
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population to be 3.13 and 5.26% in rural and urban areas, respectively. Compared to existing models, the accuracy o
much higher at cell, county and province scales.
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1. Introduction

Population density could be distinguished into
human population density (Yue et al., 2003, 2005a)
and wildlife population density (Miller et al., 2002;
Sekimura et al., 2000; Kokko and Lindstroem, 1998).
For both of them, land cover is a control variable (Yue
et al., 2005b; Alexande and Shields, 2003; McCarthy
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and Lindenmayer, 1998). This paper focuses on mo
eling human population density on the basis of l
cover data.

The distribution of human population has been id
tified as one of the key datasets required for impro
understanding of human impacts on land and w
resources. Human population distribution data
also improve projections of the environmental c
sequences that may be expected under varying
els of economical growth (Clarke and Rhind, 199
Elvidge et al., 1997). These predicted environmen
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and economic data provide valuable information for
decision-makers such as governments, enterprises and
individuals. Human population density is one of the
major indicators used to describe human population
distribution. However, it is a general indicator, and con-
sequently hides the internal variability of choropleth
units (Zhang, 1997). The larger the size of the choro-
pleth unit, the more generalized the data are (Demers,
1997). So human population density in an adminis-
trative region does not provide the spatially explicit
details (Elvidge et al., 1997) necessary to describe
the actual distribution of human population in the
region (Demers, 1997). Usually, two mapping meth-
ods, dot distribution mapping and dasymetric mapping,
are employed to improve the detail of human popu-
lation distribution mapping. Dot mapping records the
amount and location of human population by points, but
the exact geographical location is not precise (Demers,
1997). Dasymetric mapping based on the idea of choro-
pleth maps, invented by Wright in 1936, improves the
quality of the original choropleth maps by dissolv-
ing the boundaries imposed by some smaller sub-areas
(Wright, 1936; Demers, 1997). With the rapid increase
in demand for high resolution population data and the
introduction of new technology, such as geographic
information systems (GIS) and remote sensing (RS),
many recent studies use the digital simulation technol-
ogy of Dasymetric mapping to estimate raster based
human population distributions.
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tialized census data in Qinghai–Tibet plateau based
on five factors.Yang et al. (2002)studied the method
of population specializations and used this effect to
create a simulated population grid of the Shandong
province.Sutton et al. (2003)explored some theoretical
and empirical efforts at estimating ambient population
density and proposed a quantitative means for evalu-
ating their validity.Yue et al. (2005a,b)used surface
modelling of population distribution (SMPD) based on
grid generation method to simulate the population den-
sity in 1 km cells in 1930, 1949, 2000 and 2015.

Although these studies focused on the factors that
affect population distribution, the correlations and rel-
ative influence of those factors are rarely investigated.
The inclusion of too many factors makes modeling
more complicated, causes information redundancy, and
magnifies the effect of redundant information in pop-
ulation density simulation (Zhang and Yang, 1992).
Some studies did not fully consider the difference in
model parameters between regions. Others ignored the
difference of distribution pattern between rural and
urban populations and used the same models in both
rural and urban regions. In this study, we used China
as a case study to address three issues:

1. Can land cover data be used to model population
density on grid-cells independently?

2. Using this technique, what is the most effective
method for creating a raster based population den-
sity surface?
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can are frequently used global population data
PW proportionally allocated total population to g
ells based on the assumption that population is
ributed evenly over administrative units (Tobler et al.
997). LandScan distributed census counts to 30
0-s grid-cells based on probability coefficients
ulated from road proximity, slope, land cover, a
ighttime lights (Dobson et al., 2000, 2003; Dobso
003). In addition, Lo (2001) developed allometri
rowth models and linear regression models to m

he non-agricultural population of China in 1997 us
he nighttime lights data from the Defense Meteoro
cal Satellite Program (DMSP) Operational Lines
ystem (OLS).Sutton (1997)indicated the limitation
f nighttime data in rural regions and estimated only
rban population of North America.Wang and Miche
1996)took advantage of a gravity model to simul
he urban population density.Liao and Sun (2003)spa-
. What is the accuracy of estimate?

. Data sources

.1. Data of population

The original census data comes from Chinese
lation by county in 2000 (Chinese Ministry of Pub
ecurity, 2001). These data are available as an attr
f the administrative polygons at the county level.

.2. Data of land cover

The original land cover data comes from Data C
er of Resources and Environment, Chinese Acad
f Sciences (CAS). It is derived from Landsat T
atic Mapping (TM) images in 2000 according to
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Table 1
Land Cover classification system and residential classification

Primary types Secondary types Residential
types

Code Name Code Name

1 Farmland 11 Paddy field A
12 Non-irrigated field A

2 Woodland 21 Forest A
22 Shrub A
23 Sparse woodland A
24 Other woodland A

3 Grassland 31 Dense grassland A
32 Moderate dense

grassland
A

33 Sparse grassland A

4 Waters 41 River N
42 Lake N
43 Reservoir and

pond
N

44 Glacier and snow N
45 Beach N
46 Bottomland N

5 Build up area 51 Urban area R
52 Rural Residential

area
R

53 Other built-up area R

6 Unused land 61 Sandy land N
62 Gobi N
63 Saline-alkali land N
64 Marsh N
65 Bare land N
66 Bare rock and

gravel land
N

67 Other unused land N

Note 1: N means exclusive area, R means residential areas, A means
non-residential areas, R and A are habitable areas. Note 2: in this
paper, the land cover types will be replaced by a symbol composed
of “land” and their codes. For example, land11 will represent paddy
field.

Class System of Land use/Land cover in Remote Sense
Mapping at 1:100,000 scale (Table 1, Liu, 1996; Liu
and Buhe, 2000; Liu and Zhuang, 2003). In its original
data format, the land cover data is an ArcInfo coverage.
For this study, it was converted into 25 raster files in
Environment Systems Research Institute (ESRI) Grid
format at 1 km resolution using the cell-based encod-
ing method of percentage breakdown. Each raster file
represents a land cover type; the value of each grid-
cell in the raster file is the percentage of the type of
land cover in the grid-cell. Prior to this conversion, all

the towns which have lower administrative grades than
county seats were changed from ‘rural residential’ land
cover type to ‘urban’ type. This step was necessary to
standardize the labeling of towns and cities (as ‘urban’)
for the purposes of population distribution modeling.
In the original land cover data, areas of dense popula-
tion (‘urban’ areas from the modeling perspective) are
only designated as ‘urban’ if they have an administra-
tive grade of county seat or higher.

2.3. Digital elevation model (DEM)

The original DEM is the Chinese part of the
GTOPO30 (global topography at 30-arcsecond reso-
lution) dataset derived from U.S. Geological Survey’s
(USGS) Earth Resources Observation System (EROS)
Data Center. After reprojecting and resampling, it was
converted into a 1 km resolution DEM of China. The
slope data were derived from the DEM.

2.4. Temperatures

The temperature data originated from the observa-
tions of 636 climate stations of the National Weather
Bureau. To get the ground temperatures of grid-cells,
the geo-located temperatures were first converted to
sea level equivalent values according to the altitude
of observatory stations and the temperature lapse rate
(6.4◦C 1000 m). Then they were interpolated to 1 km
resolution cells using Ordinary Kriging. Finally, the
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EM was used to convert the interpolated tempera
f raster cells at sea level back into that at ground l
ccording to the temperature lapse rate and the alt
f cells.

Ancillary data: Other data include railways, hig
ays, rivers and cities. They were derived from
atabase of Chinese resources and environme
:1,000,000 and 1:4,000,000 scales in ArcInfo co
ge format.

All the data were integrated into ESRI ArcGIS in
lbers Equal Area Map Projection.

. Can land cover be used independently to
odel population density in grid-cells?

Population geographers divide the factors that a
opulation distribution into two types (Zhang, 1997
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Table 2
Principal component analyses of factors affecting population distribution in China

Principal component 1 2 3 4 5

Eigenvalues 5190630 1079054 125633 14 7
Contribution percent 81.16 16.87 1.96 0 0

Eigenvectors
DEM −0.3076 0.9512 0.0258 0.0032 0.0018
Slope −0.0004 0.0007 −0.0004 0.2878 −0.9577
Temperature 0.0013 −0.0034 −0.0002 0.9577 0.2878
Cropland 0.9497 0.3086 −0.0538 −0.0001 −0.0002
Rural residential area 0.0591 −0.008 0.9982 0.0002 −0.0004

Hu, 1983). One is natural factors, such as climate,
elevation and slope, which are the basic factors of pop-
ulation distribution. The second type, which also plays
a decisive role in population distribution, is socioeco-
nomic factors, such as land cover, railway, road, and
city location (Zhang, 1997). The most often used fac-
tors for modeling population distribution include eleva-
tion, slope, temperature, transportation line proximity,
cities and land cover (Yue et al., 2003). However, most
of these factors are closely related to land cover.

3.1. Correlations between land cover and other
factors affecting Chinese population distribution

3.1.1. Land cover and natural factors
To examine the redundancy of information in the

factors affecting population distribution, a principal
component analysis based on 1 km2 grid-cells was con-
ducted on two types of land cover (farmland, rural res-
idential area) and three main natural factors (elevation,
slope and temperature). The analysis results (Table 2)
show that the first principal component includes 81% of
the information about population distribution. Accord-
ing to the load matrix, the factor highly correlated
with the first principal component is farmland, the
coefficient of which reaches 0.9497. It means that
land cover data, especially farmland, includes most

of the population distribution information. Compar-
atively, the other factors are far less important than
land cover. Although the DEM is also highly correlated
with the second principal component, which contains
nearly 17% of the population distribution information,
it may not be used as a variable to model population
density because of its correlation with other factors
(Table 3).

3.1.2. Buffer analyses of land cover and other
factors

Buffer analyses of railways, highways, rivers and
cities were conducted to detect the relationships
between land cover and these factors. Because those
factors are linear or point features, they cannot be
directly used to analyze their correlation with land
cover. For this study, buffer zones of main highways
and rivers (10 zones), as well as railways and cities
(20 zones), were built at 10 km intervals (Fig. 1), and
average rural population density, farmland area, and
rural residential area were summed in each zone. This
established the relationships between population den-
sity and buffer distance, farmland and rural residential
area (Table 4). The rural population density used here
is derived from the choropleth map of rural population
density by county unit, converted to a 1 km resolution
grid.

Table 3
Pearson correlation coefficients between the DEM and other factors affecting population distribution at three scales

S oefficie s

e

C −
C −
P −
cale Degrees of freedom Pearson correlation c
between the DEM and

Slope Temperatur

ell 9503010 0.3709 −0.7722
ounty 2354 0.6546 −0.6542
rovince 31 0.5925 −0.68851
nts Critical correlation coefficient
at the 0.01 confidence level

Cropland Residential area

0.4528 −0.2164 <0.1
0.5617 −0.4363 <0.1
0.6712 −0.5362 0.4426
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Fig. 1. Main railways, highways, rivers and cities in China.

The results listed inTable 4show that rural popula-
tion density is significantly correlated with the distance
from railways, highways, rivers and cities, indicating
that these factors have important influence on popula-
tion distribution. The results inTable 4also show that
both farmland and rural residential areas have high cor-
relation with the average rural population density in the
buffer zones of railways, highways, rivers and cities,
suggesting that population density change with the dis-
tance from these factors can be derived from land cover
data.

3.2. Influence of China’s population system and
land system upon population distribution

Systems of land use and population location in
China are the origin of relationships between popu-
lation and land cover distribution evident in modern
times. China was an agricultural country historically,
and owning a piece of land has been the dream of Chi-
nese peasants for generations. Land Revolution in the
early 1950s allocated an average amount of land to
peasants. Although collective farming was conducted

Table 4
Relationships of average rural population density with buffer distance, farmland area and rural residential area in buffer zones of some affecting
factors

Factors Items Buffer distance (km) Farmland (100 m2) Rural residential area (100 m2)

Railway Model y =−124.57 ln(x1) + 704.77 y = 0.0845x2 − 36.353 y = 0.8151x3 + 33.62
R2 0.9955 0.9781 0.984

Highwaya Model y =−126.88ln(x1) + 587.94 y = 0.0034x1.3845
2 y = 0.9244x3 + 9.9662

R2 0.99 0.9998 0.9914
Rivera Model y = 342.96x−0.1648

1 y = 0.1132x2 − 80.349 y = 0.6852x3 + 54.116
R2 0.8902 0.961 0.9509

City Model y = 811.77 e−0.017x1 y = 2e− 7x2.5898
2 y = 0.0889x1.4396

3
R2 0.9928 0.9544 0.9463

a Buffer analyses of highways and rivers employed ten buffer zones of 10 km intervals and railways and cities employed 20 zones.



Y. Tian et al. / Ecological Modelling 189 (2005) 72–88 77

in 1960s and 1970s, it had little influence on the clus-
tering of population because the collective farming was
employed in the smallest administrative unit (the farm-
ing team, Shengchandui, is usually less than 1 km2),
had no more than 100 persons, and peasants partici-
pating in collective farming still resided in their origi-
nal homes. From 1980s, the Household Responsibility
System of land use was implemented across the coun-
try. Peasants contracted and managed dispersed lands
according to their familial networks. The government
of China recently declared that the household responsi-
bility system would continue and the land tenure would
extend to 30 years. This shifted the contract term of
land from short to long and further enhanced the spa-
tial attachment between land and peasant. However,
another Chinese system, the Household Registration
System (hukou), divided the population into “agricul-
tural” and “non-agricultural” sectors, with different
privileges according to their residential status, and fur-
ther reinforced the land-peasant bond. As noted by
Zhong (2001), the system almost binds peasants to their
lands.

Generally, the rural–urban migration now is much
easier than in earlier times, and in some regions, peas-
ants are encouraged to move into cities and towns.
These people are registered as urban citizens and get
the corresponding legal statuses and privileges, but at
the same time, they lose their lands in rural regions and
are not counted in the rural population any more. For
most of the peasants who rush into cities, their inten-
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to the farm is constrained to about 1 km, meaning that
peasants are not able to live far from their lands.

3.3. Two problems caused by scale issues

3.3.1. Are the transportation lines, rivers and
cities always necessary for modeling?

Population distribution is influenced by factors at
all scales simultaneously, however, the intensity and
manifestations of the influences from different scales
are very different. The factors at a national scale, such
as main roads, railways, rivers and cities, control the
basic pattern of national population distribution. But at
a county level, the roads between county sites, or towns,
or even villages may be much more important for rural
population distribution. It follows that the entrances of
larger roads and the stations of railways are better rep-
resented as attractions for population by point features
rather than line features. Lower–grade roads are very
easy to access owing to their numerous entrances, mak-
ing their “linear attractiveness” more obvious.Fig. 2
illustrates the difference of attraction, from a residential
perspective, between an expressway and an ordinary
highway in Chongqing. Clearly, if administrative units
at the county scale were used as control areas in popu-
lation simulation, the factors affecting population at
the county scale would be more important and the
factors at a national scale would be almost unneces-
sary. However, it is very difficult to get road network
data in all counties. Furthermore, a series of tasks,
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ions are to hunt for jobs, not to settle down. Before t
an obtain the legal status and corresponding privil
s urban citizens, they will not give up their rights
ontract rural land and, in any case, they would lik
etain their rights to houses and lands in rural reg
Yang and Wang, 2002; Zhong, 2001). When farming is
usy, they will go back to their villages. For this reas
he relaxation on reform of migration laws is unlike
o alter the close relationship between rural popula
nd land in the near future.

In addition, it should also be noted that the prog
f agricultural industrialization in China is slow a

he agro-production mode is still predominantly at
re-industrial stage in which labor is the most imp

ant productive factor. The distribution of populat
s in large part a relic of a more agrarian time (Zhong,
001). Before the rise of large-scale mechanized a
ulture, especially in the south, the proximity of la
uch as determination of appropriate road types t
xamined, establishment of function indices, func
istances and distance decay manners of these

or the purposes of population estimation, are p
ematic due to high place to place variability at sma
cales. The same questions would apply to railw
ivers and cities. However, land cover data, which
lose correlation with those factors as discussed i
oregoing sections, can be easily obtained via rem
ensing imagery.

.3.2. Is the residential area of land cover
ufficient for modeling?

The loss of information in each land type at differ
cales is rather different.Li and Zhuang (2002)stud-

ed land cover data at three scales and found tha
rea error of all land cover types became larger w

he scale became smaller. For example, in Shan
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Fig. 2. Comparison of the point attraction of expressway and the linear attraction of ordinary highway for population in Beibei, Chongqing.

province of China, the area of urban and rural residen-
tial land at 1:100,000, compared with that at 1:10,000,
decreased 10.4 and 15.1%, respectively. At the same
time, paddy field and non-irrigated field increased 18.2

and 24.8%, respectively, while the difference of wood-
land and grassland between the two scales is very
small. This indicates that small residential areas are
“absorbed” by larger patches of farmland. In addition,

n three
Fig. 3. Contrast of residential areas i
 typical topographical regions at two scales.
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after studying a single property using land cover data at
1 km resolution,Liu et al. (2001)found that more than
60% of residential areas were lost.Fig. 3 compares
the residential areas in land cover maps at 1:100,000
used in this study with that at 1:10,000 in three typical
topographical regions of China. The comparison shows
that little of the residential area is lost in plains, while
in mountains and hills, a greater number of residential
areas are lost due to their scattered distribution. So, for
China, a country mostly composed of mountains and
hills, it is not enough to take into account only residen-
tial areas when modeling the population in grid-cells
using land cover data.

4. Methods

4.1. Research approach

4.1.1. Modeling based on land cover
Land is a synthesis of many natural and social fac-

tors which have acted in concert for long periods of
time (Zhang, 1997). As discussed above, because land
cover is highly correlated with many factors affecting
population distribution, it is a good proxy for estimat-
ing the characteristics of population distribution. This
study determines the feasibility of modeling population
density by means of land cover data.

4.1.2. Controlling total population at the county
s
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estimation of population density within rural or urban
grid-cells. Integrated models run this risk due to the
over generalization of variables controlling population
distribution when applied to disparate land types.

4.1.4. Zonal modelling
Significant geographic differences of natural, social,

economic and historical factors have resulted in differ-
ent characters of land use in different regions. Modeling
in relatively homogeneous zones can reduce effects
of these differences on population distribution. The
model was implemented in homogenous zones in an
effort to minimize population estimate error resulting
from the geographic disparity in the factors affecting
population.

4.2. Model

Consistent with the above analyses and research
approach, the Chinese Population Distribution Model
(CPDM) was developed for land cover data at 1 km
resolution according to the following:

POPij = Pir × Vjr∑k
j=1Vjr

+ Piu × Vju∑k
j=1Vju

(1)

WherePOPij is the population of thejth cell in ith
county;Pir is the rural population inith county;Piu is
the urban population inith county;k is the number of
cells inith county;Vjr is the rural population probability
c
p
c

e
r sed
t
s tion
o an
c ural
a ted
t ural
a

4
his

s
T ters
a s for
cale by rural area and urban area, respectively
Administrative polygons at the county scale are

inimum mapping units available at a countryw
cope at present, and therefore represent the best
ry level population data. Quantification of total po
ation by rural area and urban area at the county s
herefore avoids the reallocation of population betw
ifferent counties and between rural and urban a
opulation probability coefficients were normalize

ural and urban areas of counties in order to make
f the best national level population data.

.1.3. Modeling rural area and urban area
eparately

Urban and rural areas were treated separately
o the difference of affecting factors between rural
rban areas on population distribution. This separa
as necessary to avoid mistakes such as over or u
-

oefficient of thejth cell in ith county;Vju is the urban
opulation probability coefficient of thejth cell in ith
ounty.

The first term of Eq.(1) is used to calculate th
ural population in cells, and the second term is u
o calculate urban population. From Eq.(1), it can be
een that a key point of the model is the determina
f population probability coefficients of rural and urb
ells, which are normalized by county. Thus the r
nd urban population in each county will be distribu

o the cells in the county based on their normalized r
nd urban coefficients.

.2.1. Probability coefficients of rural population
Land cover types are divided into two kinds in t

tudy: exclusion areas and habitable areas (Table 1).
he former, including all the secondary types of wa
nd unused land, are excluded as input variable
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modeling because they are not fit for habitation at least
at present, which means their probability coefficients
of population ought to be assigned zero. The latter,
including all the other land cover types, also can be sub-
classified into residential and non-residential areas.
Residential areas, including urban areas, rural residen-
tial areas and other built-up areas, are the essential
variables for modeling because they are directly related
to population distribution. Although non-residential
areas, including farmland, woodland and grassland,
are not areas used primarily for dwellings, they are
never the less habitable and contain some scattered res-
idences. They are likely designated “non-residential”
due to the resolution of remotely sensed data, map accu-
racy, and the scale issues of the land cover data (Fig. 3).
The loss of residence information differs significantly
between southern and northern regions, plains and
mountains and hills. For example, population is more
centralized in the north and plains areas, whereas it
is more scattered in the south, mountainous areas and
hills. To address this issue and calculate accurate proba-
bility coefficients of cells, it is necessary to examine the
residential information inherent to each type of land.
For this purpose, the following process was adopted:

(1) Ecological zoning: Based on the mode of agri-
cultural production, the productivity of farmland,
heat, water, and landform, China can be classified
into 12 agro-ecological zones (Fig. 4, Chen, 2001).

(2) Selecting variables: Univariate linear regression
models were built between area of habitable land
types and rural population by county in each eco-
logical zone. If the model was significant, then the
land type in the model was used as one of the vari-
ables to determine probability coefficients.

(3) Modeling: The following multivariate regression
model was developed to calculate the weight of
input variables in each ecological zone:

y = β0 + β1x1 + β2x2 + · · · + βnxn (2)

wherey is rural population;x is the area of land
cover type chosen in step 2;β is the parameter.

Although the chosen variables are significant
in univariate regression, some of them might not
be significant in multivariate regression. How-
ever, for a reasonable regression equation, only
those significant variables should be used. More-
over, the collinearity between variables should be
as small as possible (William, 2000; Zhang and

ones o
Fig. 4. Agro-ecological z
 f China (fromChen, 2001).
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Table 5
Stepwise regression coefficients of land cover types with population by county in each agro-ecological zone

Ecological zones Land cover types

Land 11 Land 12 Land 21 Land 22 Land 23 Land 24 Land 31 Land 32 Land 33 Land52

1 0.00104 0 0 0 0 0 0 0 0 0.22361
2 0.02784 0.02784 0 0 0 0.00755 0 0 0 0.21002
3 0.03869 0.03112 0 0 0.00424 0 0 0 0 0.08826
4 0.07662 0.02550 0.00314 0 0.00266 0.004710 0 0 0.10240
5 0.01259 0.00448 0.00049 0 0 0 0.00053 0.00087 0 0.05307
6 0.01596 0.00776 0 0.00056 0.00022 0.000610 0 0 0.01610
7 0.02590 0.00418 0.00139 0 0 0 0 0 0 0.48514
8 0.06216 0.04468 0 0 0 0 0 0 0 0.17316
9 0.03566 0.03227 0 0.00236 0 0 0 0.00175 0.00262 0.22797

10 0.04991 0.02052 0 0 0 0 0 0 0 0.14774
11 0.01044 0.01044 0 0 0 0.00095 0 0 0 0.06393
12 0.01250 0.01021 0 0 0 0.00041 0 0 0 0.05540

Note: Italic numbers have been modified according to the qualitative order and the food productivity of each land type.

Yang, 1992). The best solution for these prob-
lems is to calculate the parameters using multivari-
ate stepwise regression. To ensure the credibility
of the parameters, the critical significance level
in the calculation was 0.10.Table 5 shows the
regression coefficients of the chosen land cover
types.

(4) Modifying coefficients: The outcome of this step-
wise regression is derived from the statistical cor-
relations between population and land, but it must
also obey certain geographic rules. Usually, land
with higher food productivity can support a larger
population so it is logical to assign a higher coef-
ficient to this type of land. According to the
degree of correlation between agricultural land and
rural population, the following qualitative order
of weight for land types was built as expression
(3), and those coefficients that did not conform to
expression (3) were modified (Table 5) according
to the food productivity of each land type (Cao
et al., 1995; Chen, 2001).

rural residential areas≥ paddy field≥
non-irrigated field> woodland and

grassland> other land≥ 0 (3)

(5) Calculating probability coefficients: The follow-
ing weighted linear model was used to calcu-

on

for each grid-cell:

Vjr =
10∑

n=1

AjnWmn (4)

whereAjn is the area of thenth land type in thejth
grid cell; Wmn is the modified stepwise regression
coefficient ofnth land type inmth ecological zone
shown inTable 5.

4.2.2. Probability coefficients of urban population
Generally, urban average population density is

directly proportional to urban size. The larger the size,
the larger the population density is (Ye, 2001). How-
ever, inner differences of urban population density also
exist. Usually, population density decreases from the
center toward the outside of town. Although the factors
affecting urban population distribution are too many
to be formulated by a simple mathematical equation
(Zhang, 1997), as a general rule, the density is corre-
lated with the size of the town and the distance from
the center. That general rule can be expressed as the
following equation:

VL = f (S, D) (5)

WhereVL is the urban population density coefficients
at siteL, S is the urban size, andD is the distance ofL
from the urban center.

As a model of spatial distribution of urban popula-
t
late the probability coefficients of rural populati
 ion, the exponential decay model (Clark, 1951) was
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typical in early research. Thereafter, there appeared
many other relative models such as the Gauss model
(Sherratt, 1960; Tanner, 1961), and the negative power-
exponential model (Smeed, 1961). In recent years, frac-
tal models for the decay of urban population density
were proposed (Chen, 1999; Feng, 2002,). As research
progressed, some “unified” models were introduced
such as the Newling model, a unification of the Clark
model and Sherratt model (Newling, 1969), and the
Gamma model, which unifies the Clark and Smeed
models (Batty and Longley, 1994). The former models
are special cases of the unified models (Shen, 2002).

The following equation is an often-used power-
exponential model of spatial urban population distri-
bution:

ρ(r) = ρ0 exp

[
−

(
r

r0

)σ]
(6)

whereρ(r) is the population density at distancer from
the urban center;ρ0 is the population density of the
urban center;r0 is the functional radius of the town,σ is
a restriction parameter reflecting the tendency for spa-
tial changes of information entropy in the urban geo-
graphic system. Although the model has been widely
criticized, urban economists have demonstrated its the-
oretical justification (Wang and Michel, 1996).

It is very difficult to get the central population den-
sity of all towns in China. However, as discussed above,
the population density has positive correlation with the
s ated
t
a from
u ed to
c ion
a

V

w ffi-
c
a
o
t the
s

In Eq. (7), the functional radius is derived from
the radius of a circle with same area as the town. In
regard to Eq.(7), two other questions deserve men-
tion. One is how to determine the centers of towns.
If the polygons of towns are irregular, their centroids
may fall outside of them. To solve this problem, the
label points of the urban polygons, which always locate
inside the polygons, were used as their centers. Another
question relates to the value ofσ. According to the
theory of urban development, a city will experience
‘developing’, ‘developed’ and ‘old’ stages; each stage
has different characteristics of spatial distribution of
population density. For example, in conjunction with
suburbanization, the population density of urban center
will decrease, which may cause a crateriform distribu-
tion of population density. Most Chinese cities, despite
many years of building since the reform and open-
ing, are still in the early developed stage; many middle
and small towns are still in the developing stage. This
means the value ofσ will not be high. To distinguish the
difference of spatial structure caused by the different
development stages, all the cities and towns in China
were classified into three types (main cities, middle
cities and small towns) according to their size and other
socio-economical indicators such as gross domestic
production (GDP), and population (Zhang, 1997; Zhou
and Xu, 1997; Feng, 2002). The values ofσ for the three
types are 1.43, 1.26 and 1.14, respectively, which are
derived from the population density sampling of 112
urban cells.

ral
a n
A pop-
u

5

5

ted
i ion
o om
s for
n
s rror
i the
n was
ize of the town, and the functional radius is also rel
o urban size. Therefore, by integrating Eqs.(5) and (6),
model based on the size of town and the distance
rban center was constructed. This model was us
alculate probability coefficients of urban populat
s follows:

mn = An ln Am exp

[
−

(
rn√

Am/π

)σ]

= An ln Am exp[−(rn
√

π/Am)
σ
]

= An ln Am exp(−1.9874rσ
nA−0.5σ

m ) (7)

hereVmn is the urban population probability coe
ients of thenth grid-cell in themth town, An is the
rea of urban land in thenth grid cell,Am is the area
f themth town,rn is the distance from thenth cell to

he urban center,σ is a parameter corresponding to
tage of development of the town.
After calculating the probability coefficients of ru
nd urban populations, Eq.(1) was implemented i
rcGIS software to create the simulated Chinese
lation density map (Fig. 5).

. Validation and comparison

.1. Validation

Samplings of population density were conduc
n rural and urban cells to validate the simulat
utcome. For rural population density, pure rand
ampling was applied. According to the formula
ecessary sample size (Tian et al., 2003), when the
ampling precision is more than 95%, allowable e
s less than 7% and the sampling ratio is 0.5,
ecessary sample size is 196. A random function
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Fig. 5. Simulated Chinese populations of 1 km2 grid-cells in 2000.

introduced to select the 196 sample cells from a sorted
list of all the cells in the grid of simulated population.
For urban population, stratified sampling was applied
and 112 cells from towns with different landforms
and sizes were used to do the validation. Because it is
very difficult to get the population in the 1 km2 cells
selected for sampling, the average population densities

of villages or blocks within sampled cells were used
to assess the accuracy of the simulation (Table 6).

The assessment shows that the accuracy of the sim-
ulation in rural areas is much higher than that in urban
areas. The percentage difference usually is less than
5 in populous regions such as Huanghuaihai plains,
Sichuan basin, and the northeast plain. In some regions

Table 6
Statistics of percentage difference between simulated population and sampled population in Landscan and CPDM

Regions Models Cells Percentage difference Mean absolute relative
difference (%)

>3% >5% >7% >10% >15%

Rural area CPDM Number 196 94 78 69 46 32 3.13
% 100 47.96 39.80 35.20 23.47 16.33

Landscan Number 196 111 102 89 67 55 5.49
% 100 56.63 52.04 45.41 34.18 28.06

Urban area CPDM Number 112 62 58 46 39 26 5.26
% 100 55.36 51.79 41.07 34.82 23.21

Landscan Number 112 76 68 59 50 36 8.17
% 100 67.86 60.71 52.68 44.64 32.14
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Table 7
Comparison of population error between Landscan and CPDM at county and province scales

Level Model Administrative unit Error

>3% >5% >7% >10% >15% >20% >50%

County Landscan Number 2317 1586 1199 852 502 236 138 22
% 100 67.37 50.93 36.19 21.33 10.03 5.86 0.93

CPDM Number 2317 0 0 0 0 0 0 0

Province Landscan Number 31 17 9 3 2 1 1 0
% 100 54.84 29.03 9.68 6.45 3.23 3.23 0.00

CPDM Number 31 0 0 0 0 0 0 0

with sparse population, the percentage difference is
very large, even greater than 100 in a few cells, but the
absolute error of population is low, often less than one
person. In urban areas, more than half of the sampling
cells have more than 3% difference. For some cities,
especially for those located in hills and mountains, the
average difference is larger than that in other towns
because of their complicated spatial structure. In this
study, it was assumed that the towns have only one cen-
ter, which is not accurate for towns with multi-centers
or sub-centers. This could explain the discrepancy of
urban population density. However, for population sim-
ulation at 1 km resolution, the population distribution
in towns is not as important as that in rural areas. More-

over, 1 km resolution is insufficient to show the inner
details of urban population distribution. Another reason
for the differences between the sample and the estimate
from the simulation is that the population density used
for validation was from villages, which does not corre-
spond exactly to the location of sampling cells.

5.2. Comparisons

The available population datasets at 1 km resolution
in China include the Landscan ofDobson et al. (2003),
the results fromLo (2001)and the results formYue
et al. (2003). However, the outcome of Yue has not
been validated and its digital version is unavailable.

ulation
Fig. 6. Comparison of pop
 density in Northeast of China.
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Fig. 7. Geographic profiles of population density in five populous regions of China.
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Lo estimated only the non-agricultural population of
China, with mean relative error of population density
(in 17 cities) of 40.84% (Lo, 2001). Landscan is the
best available population dataset for comparison with
the outcome of this study (CPDM).

To compare the population of CPDM with Land-
scan, Landscan was re-projected to the Albers pro-
jection. To avoid “loosing people” when re-projecting
Landscan, we first convert Landscan to points, re-
project the points, rasterize the points to a high resolu-
tion, and lastly resample the points to the 1 km cell size.

The population of CPDM and Landscan are com-
pared at three scales (sampling cells, county, and
province,Tables 6 and 7). Table 6shows that the per-
centage difference of CPDM in sampled cells is lower
than that of Landscan in both rural and urban areas.
A closer examination shows that the cells with higher
differences are mainly located in the highway and the
suburb areas of cites. The validation of Landscan also
shows that the population of cells near transportation
lines are overestimated and the population of suburbs
are underestimated because the coverage of cities in
Landscan is likely a large underestimate.Table 7shows
that the population errors of 1586 counties and 17
provinces in Landscan are more than 3%, which are
respectively 67.37 and 54.84% of the counties and
provinces of China. Additionally, 21.33% of counties
and 6.45% of provinces have population errors are than
10% in Landscan. However, the errors in CPDM are
zero at both county and province scales because of con-
t

DM,
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N on-
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t that
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t ub-
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i
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l ith
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6. Discussion and conclusions

CPDM is a dasymetric interpolation model. Its key
function is to distribute census counts to cells based
on population probability coefficients. Although many
factors affect population distribution (elevation, slope,
roads, may all be used as input variables to calculate
probability coefficients), it was found that land cover
is the best choice for population distribution modeling,
because it is highly correlated with many other factors
and includes most of the population distribution infor-
mation.

The raster files of land cover types used in this study
were converted from vector land cover polygons using
the percentage breakdown encoding method, to avoid
the loss of land information in land cover data with
a single property (type). The weights of land types
were determined by their stepwise regression coeffi-
cient, and also controlled by a qualitative geographical
rule. The control of total population by rural and urban
area at the county scale not only prevented population
from being reallocated, but also rendered some national
scale factors, such as main roads and cities, unneces-
sary for inclusion in the model. The difference between
the factors influencing population distributions in urban
and rural areas was addressed through the use of dif-
ferent modeling algorithms for urban and rural areas.
Zonal modeling was used to efficiently reduce the geo-
graphic difference of land cover and customize model
parameters for local regions. Based on a distance decay
f nts
w rom
u ion.
A ban
p ion
c aken
i

put
s asi-
b with
o en-
s ancy
o for-
m on.
A acy
a nted
i ially
a

rol of total population by county.
Fig. 6demonstrates the difference between CP

andscan and mean population density of countie
ortheast of China. Clearly, CPDM and Landscan c

ain a much more detailed population distribution t
hat of the mean density map. It also can be seen
he population of Landscan is more centralized in
ransportation lines than that of CPDM, and the s
rbs of cities have more population in CPDM than

n Landscan.
Six pairs of population profiles of CPDM and Lan

can are plotted inFig. 7. This figure shows that th
anges of population density in profiles of CPDM
ess than that of Landscan, many of the cells w
igh values in Landscan are highways. It also ca
oted fromFig. 7 that the rural population of CPD

s slightly higher than that of Landscan, especiall
ichuan basin.
unction, the model of urban population coefficie
as built as a function of urban size and distance f
rban center, which greatly simplifies the calculat
lthough CPDM can elucidate basic patterns of ur
opulation distribution, some details of the distribut
aused by multi-centers or sub-centers are not t
nto consideration.

The validation and comparison of the CPDM out
hows that the simulation based on land cover is fe
le and the outcome has high accuracy. Compared
ther models, CPDM has only two input variables, c
us data and land cover data. It reduces the redund
f information and thus avoids the overuse of in
ation in the factors affecting population distributi
t the same time, it improves the simulation accur
nd the calculation efficiency. The method prese

n this study is applicable to other countries, espec
gricultural countries.
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Further research is needed to assess whether impro-
vements to the simulation are possible. For example,
using a finer agro-ecological zoning may make the wei-
ghts of land cover types more credible; more detailed
information about urban spatial structure may improve
the precision of urban population density estimates;
and validating with the actual population in 1 km grid-
cells can better depict the source of error in the model.
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