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Abstract
This article examines the impact of farmers’ perceptions of temperature change on
implementing environmentally friendly agriculture practices on rubber plantations. Based
on the data collected from 611 smallholder rubber farmers in Xishuangbanna Dai
Autonomous Prefecture (XSBN) in the upper Mekong region, an endogenous switching
probit model and an endogenous treatment effects model are applied to estimate the
impacts of farmers’ perceptions of temperature change on implementing environmentally
friendly rubber plantations (EFRP) proxied by the intercropping system. While the real
annual average temperature in XSBN has been increasing, only 59% of respondents
perceived an increasing trend, whereas over 38% perceived no change. Farmers’ percep-
tions of temperature change appear to hinge on their education and socioeconomic
characteristics and the experience of shocks related to regional climate change. Improving
farmers’ perceptions of increasing temperature can significantly foster their practice of
EFRP. Hence, policies that promote awareness of regional climate change can effectively
encourage the implementation of mitigation practices.
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1 Introduction

In recent decades, the land use changes that occur through the conversion of natural rainforest,
secondary forest, jungle, farmland, or other land types to monoculture tree crop plantations
such as natural rubber, oil palm, and coffee plantations have led debates about deforestation,
environmental degradation, and sustainable development in developing countries, especially in
Southeast Asia (Angelsen 1995; Qiu 2009; Wicke et al. 2011; Zhou 2008; Ziegler et al. 2009).
Notably, the conversion from forests to tree crops has significantly increased carbon emissions
(Carlson et al. 2012; Fearnside 1997; Min et al. 2019), while the accumulation of carbon
dioxide and other greenhouse gases is likely to lead to global warming and other substantive
climate changes (Nordhaus 1992). Evidence from monoculture plantations of natural rubber,
oil palm, and coffee has consistently confirmed that the massive expansion of these tree crops
has greatly affected the regional climate (He and Zhang 2005; Hergoualc’h et al. 2012;
Laurance et al. 2010; Qiu 2009; Zhou 2008).

Farmers’ perceptions of the regional climate reflect their judgments and awareness of
climate change and may affect their adaptation and mitigation behaviors (Hou et al. 2015).
While the literature on adaptations makes it clear that perception is a necessary prerequisite for
adaptation (Maddison 2007), some farmers who do not perceive climate change might also
implement agricultural practices that help mitigate climate change. Hence, a better understand-
ing of farmers’ perceptions of climate change has been widely viewed as a crucial mechanism
in the process of improving adaptation (Hou et al. 2017; Shi et al. 2015; Yu et al. 2013), which
may determine the validity of policies or programs designed to cope with climate change.
Temperature is a popular metric for summarizing the state of the climate, while surface air
temperature change is a primary measure of climate change (Hansen et al. 2006; Lee et al.
2015). However, occasionally, farmers’ perceptions of mean temperature are inconsistent with
the meteorological record data (Hou et al. 2015; Lee et al. 2015; Maddison 2007). This
incorrect (inconsistent) perception of temperature change may lead to inappropriate adaptation
to, mitigation of, or responses to production or the natural ecosystem (Dawson et al. 2011).
Counterfactual evidence by Di Falco et al. (2011) clearly indicates that farmers who adapted to
climate change would have experienced a loss in food products if they had not adapted.

In the Greater Mekong region, the ecological environment and regional climate have been
largely influenced by local human activities, notably, the expansion of monoculture rubber
plantations (Qiu 2009; Ziegler et al. 2009). A typical case is the rapid expansion of natural
rubber plantations in Xishuangbanna Dai Autonomous Prefecture (XSBN) in the southern
Yunnan Province of China (Min et al. 2019), which is located in the upper Mekong region and
is one of China’s few tropical rainforest areas. Apart from the consequences of deforestation,
biodiversity loss, loss of water, and soil erosion (Hu et al. 2008; Min et al. 2018), the impact of
monoculture rubber farming on the regional climate has also been observed (Qiu 2009; Zhou
2008). For instance, He and Zhang (2005) found that since the 1960s, the average temperature
of rubber planting areas in XSBN has increased at a rate of 0.01 °C/year to 0.04 °C/year, while
there has been no change in other non-rubber planting areas in Yunnan Province. Some
smallholders have also experienced yield loss due to pest and diseases (e.g., powdery mildew)
in rubber farming as a result of higher temperature. However, to date, smallholder rubber
farmers’ perceptions of temperature change in XSBN have not been well recorded due to a
lack of relevant data.

Numerous studies have been conducted to investigate farmers’ adaptation and mitigation
behaviors related to climate change (e.g., Antle and Capalbo 2010; Di Falco et al. 2011; Hou
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et al. 2017). However, most of these studies focused on food crops, while the adaptation or
mitigation actions taken by smallholders planting non-food agricultural products to cope with
climate change in the local area have rarely been discussed. Environmentally friendly rubber
plantations (EFRP), which the local government in XSBN has proposed in recent years (Min
et al. 2017a), aim to reduce the negative environmental impacts of agricultural practice and
help to cope with regional climate change to some extent (Min et al. 2018). Previous studies
have reported that agroforestry, tree-based production systems could play a significant role in
sequestering carbon and mitigating the atmospheric accumulation of greenhouse gases
(Dawson et al. 2011; Verchot et al. 2007), thereby helping to mitigate climate change. For
instance, Hergoualc’h et al. (2012) proposed mitigating the climatic impact of coffee mono-
cultures through establishing coffee-based agroforestry systems. Therefore, as an essential
component of EFRP, the establishment of a rubber-based agroforestry system, specifically
through intercropping (Min et al. 2017a), is presumed to be a useful mitigation behavior for
regional climate change.

Specifically, the program of EFRP was announced by the local government of XSBN in
2009, while the implementation guidelines of the program were formulated in 2013 (XSBN
Biological Industry Office 2013). One of the core contents of this program introduces rubber
intercropping systems which, on one hand, can increase biodiversity and green cover within
rubber trees as well as improving the cooling function of rubber plantations; on the other hand,
it may help improve smallholder rubber farmers’ resilience of livelihoods. However, the
implementation of EFRP has to face challenges of limited family labor, rising labor wages,
and household financial constraints. To date, while the government of XSBN has implemented
the pilot projects of EFRP in some rubber plantations, there is no any specific promotion or
extension measures of EFRP for smallholders in addition to calling for them to adopt it. The
adoption rates of EFRP by smallholder rubber farmers in XSBN are also unclear.

Given the significant impact of farmers’ perceptions of climate change on their adaptive
and mitigation behaviors (Li et al. 2017; Swe et al. 2015; Woods et al. 2017), a research
question is raised: whether and to what extent farmers’ perceptions of regional climate change
in terms of temperature change affect the implementation of the EFRP model on their farms.
The answers to these questions not only contribute to the further implementation of the EFRP
model but are also critical to better understanding farmers’ perceptions and mitigation behav-
iors related to regional climate change in rubber planting areas in the upper Mekong region.
Additionally, the study complements the empirical evidences supporting policymakers’ re-
gional climate change mitigation plans and investments in rubber planting areas.

The overall goal of this study is to investigate smallholder rubber farmers’ perceptions of
temperature change in XSBN and examine the impacts of these perceptions on the implemen-
tation of the EFRP model as proxied by the intercropping system. The scope of this study is
limited to temperature change and the rubber intercropping system because they are the
primary factors for regional climate change and EFRP implementation, respectively, in XSBN.
To our knowledge, in the existing literature, no empirical study has investigated how rubber
farm management has adjusted to regional climate change. While this study is limited to
southern China, the findings have valuable reference implications for other rubber planting
areas in the Mekong region and other areas in Southeast Asia. More broadly, this study to
some extent also provides a reference for the design of policies aiming to mitigate the climatic
effect of the conversion from forests to monoculture tree crop plantations in related developing
countries.
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To achieve our goals, we employ cross-sectional data collected in 2015 from 611 small-
holder rubber farmers in XSBN in the upper Mekong region of southern China. Based on the
instrumental variable (IV) full information maximum likelihood (FIML) method, an endoge-
nous switching probit (ESP) model along with a counterfactual analysis is applied to estimate
the effects of smallholder rubber farmers’ perceptions of temperature change on their adoption
of the rubber intercropping system. An endogenous treatment effects model is used to estimate
the adoption intensity of rubber intercropping.

The results show that monoculture was the dominant planting system of rubber plantations
in XSBN in 2014. While the real average temperature per year has been increasing in XSBN
over the past 15 years, only 59% of respondents perceive an increasing trend. The results of the
average treatment effect on the treated (ATT) indicate that a household that perceives increasing
temperature has a 18.8% higher probability of implementing rubber intercropping. The coun-
terfactual results of the average treatment effect on the untreated (ATU) further suggest that if
households that do not perceive increasing temperature perceived increasing temperature, they
would have a 49.9% higher likelihood of implementing rubber intercropping. Smallholders
who perceive increasing temperature averagely adopt rubber intercropping more 3.359 mu than
those who do not perceive increasing temperature. Hence, farmers’ perceptions of regional
climate change can significantly affect their rubber farming practices.

The remainder of this article is organized as follows. Section 2 presents the data source and
the descriptive statistics of farmers’ perceptions of temperature change and the adoption of
EFRP. Section 3 presents the conceptual framework and hypotheses. Section 4 develops the
empirical estimations to analyze the impacts of farmers’ perceptions of temperature change on
the adoption of EFRP at the household and plot levels, respectively. Section 5 discusses the
results and then concludes.

2 Data and descriptive statistics

2.1 Data source

The data used in this study are from a socioeconomic survey of smallholder rubber farmers in
XSBN in March 2015. To ensure a representative sample of smallholder rubber farmers in
XSBN, a stratified random sampling approach, taking into account the rubber planting area per
capita and the distribution of rubber planting areas across townships, was applied in this study
(Min et al. 2019). Firstly, all townships with rubber plantations in each county of XSBN were
stratified by the planting area per capita. Afterward, two townships were stratified and
randomly selected in Menghai due to the relatively low intensity of rubber distribution, while
three townships were stratified and randomly selected in Jinghong and Mengla, respectively.
Accordingly, the eight sample townships were selected as shown in Fig. 3 of Appendix A.
Secondly, a similar sampling approach was used to select the sample villages in each
township. Two sample villages were selected in each sample township of Menghai, while
three sample villages were selected in each sample township of Jinghong and Mengla. A total
of 42 villages were chosen. Thirdly, about 14 sample households were randomly selected from
the village roster.1 Finally, we interviewed a total of 611 households of smallholder rubber

1 Based on the arrangement of each enumerator interviewing two households per day, the number of households
per village ranged from 12 to 16.
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farmers from 42 villages in 8 townships in XSBN that broadly represent the different types of
smallholder rubber farming in XSBN.

In the household survey, we used a comprehensive household questionnaire, including
detailed information on the characteristics of household members, households, land use,
rubber farming, other farm and nonfarm activities, and several other modules relevant to
rubber. We also designed a block of questions on regional climate change and farmers’
mitigation behaviors. Within these modules, we recorded farmers’ perceptions of trends in
temperature, rainfall, extreme weather, and natural hazards in the past 15 years; the impacts of
these changes on rubber farming; and farmers’ mitigation behaviors related to these changes.
Furthermore, a village questionnaire was used to interview village heads to collect basic
information on the village, such as population, land, agriculture, employment, infrastructure,
economic and environmental conditions, etc.

2.2 Farmers’ perceptions of increasing temperature and their mitigation behaviors

The annual mean temperature for XSBN from 1970 to 2014 is shown in Fig. 1. While the
yearly mean temperature is fluctuating, an overall increasing trend occurred throughout the
study period. Notably, the annual mean temperature increased from 23.83 °C in 2000 to
24.96 °C in 2014. Accordingly, the mean temperature in XSBN has risen more than 1 °C in
15 years. Compared with the annual temperature change trend in Yunnan and 8 other
provinces in China (Hou et al. 2015), the temperature increased faster in the rubber planting
area than in other regions. The results confirmed that XSBN experienced a significant
increasing temperature trend in recent decades.

Interestingly, while the real annual mean temperature in XSBN increased from 2000 to
2014, smallholder rubber farmers’ perceptions of temperature change in the local area were
heterogeneous (Table 1). Only 58% of the 611 smallholders perceived an increasing trend
consistent with the actual recorded data in this period (2000–2014), while 38% of smallholders
perceived that the temperature had not changed. The percentages of smallholder rubber
farmers who reported perceiving “a decreasing trend” or who responded “do not know” were
approximately 1% and 2%, respectively.
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Fig. 1 The trend of average temperature per year from 1970 to 2014 in XSBN. Source: National Meteorological
Information Center
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While rubber intercropping is the primary component of EFRP, only 18% of smallholders
had adopted rubber intercropping in 2014, while of total 3236 plots, 12.2% of rubber plots
intercropped with other crops. This result indicates that monoculture was the dominant
planting system on rubber plantations in XSBN (Min et al. 2017a, b). The crops intercropped
with rubber at the plot level are summarized in Table 8 of Appendix A. The primary crop
intercropped with rubber was tea, which occupied about 46.7% of 394 intercropping plots.
Maize and coffee ranked second and third, accounting for 73 (18.53%) and 21 (5.33%) plots,
respectively. The rest of crops intercropped with rubber also included banana, sorghum, hemp,
fruits, and other economics forest tree. These intercropped crops increased agrobiodiversity as
well as improved the cooling function of rubber plantation systems and reduced soil erosions
by increasing green cover between monocultural rubber trees.

Smallholder farmers’ implementation of the EFRP model was correlated with their percep-
tions of temperature change. Among the smallholders who perceive increasing temperature,
approximately 21.57% had adopted rubber intercropping, which was significantly higher than
the adoption rate of rubber intercropping in the other three groups (Table 1). Accordingly, we
re-categorized all the smallholders into two groups: (1) those whose perceptions were consis-
tent with the actual temperature record trends (smallholders who perceived increasing temper-
ature in XSBN) and (2) those whose perceptions were inconsistent with the recorded trends
(smallholders who did not perceive increasing temperature in XSBN). Overall, it seems that
farmers’ perceptions of increasing temperature could foster their adoption of the EFRP model
in terms of rubber intercropping.

3 Conceptual framework and hypotheses

In this study, we focus on smallholder rubber farmers’ decisions to adopt the EFRP which is
proxied by rubber intercropping. The intercropping decision is assumed to be made for
existing rubber plantations, i.e., after rubber trees were planted. The approaches to model
adoption decisions normally include (1) using a static expected utility model to identify the
determinants of adoption assuming that adoption will be beneficial and (2) conceptualizing
adoption as a continuous optimization problem in which farmers have to make a choice about
how much rubber land they want to devote to EFRP practices (Sunding and Zilberman 2001).
Due to data constraints, the former approach is more widely used than the latter in previous
adoption studies (Tang et al. 2016).

Table 1 Smallholder rubber farmers’ perceptions of temperature change and their adoption of rubber
intercropping

Categories The proportion of households’ perception
on temperature

The average proportion of households with
rubber intercropping by the different
perception on temperature

Increase # 58.43% 21.57%
No change 38.30% 13.25%***
Decrease 1.31% 0.00%***
Do not know 1.96% 16.67%***

Source: Authors’ calculation

#Reference group of the mean-comparison test; *** p < 0.01
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Consistent with previous studies of technology adoptions (e.g., Herath and Hiroyuki 2003;
Abdulai et al. 2011; Min et al. 2017a, b), this study employs the expected utility-maximizing
framework to model the adoption of EFRP.2 The farmer’s total utility from rubber farming is
assumed to include two components: (1) the utility derived from the profit of rubber farming
and intercropping, which is affected by the weather condition during the crop season, and (2)
the utility derived from improved environmental conditions when adopting rubber
intercropping under the weather condition during the crop season. The farmer decides on
the adoption of EFRP by taking into account the total utility derived from rubber farming. That
is, if the adoption of EFRP can maximize the total utility of profit utility and environmental
utility, the farmer would choose it.

Given that farmers’ perceptions of climate change play a significant role in their
adaptation and mitigating behaviors (Hou et al. 2017; Shi et al. 2015; Yu et al. 2013),
the farmer’s perception of temperature change can be incorporated into the adoption model
of EFRP (Fig. 2). Intuitively, the farmer’s perception of temperature change determines
her/his prediction of weather condition in the coming cropping season (Bai et al. 2015).
On the one hand, the increasing temperature is likely to increase the risk of pests and
diseases (e.g., fungus diseases) in rubber farming and reduce the environmental utility of
the farmer. On the other hand, the EFRP, proxied by rubber intercropping, to some extent,
may mitigate the increase in temperature by lowering temperatures in rubber plantations.
Thus, the farmers’ perceptions of increasing temperature may affect their expected total
utility comprising the utility from profit and the utility from environmental improvements
and hereby influence the adoption of EFRP adoption decision. Therefore, the first hy-
pothesis can be formulated as farmers’ perceptions of increasing temperature have a
positive effect on their adoption of EFRP (H.1).

The adoption of EFRP can be further categorized as three sub-adoption decisions (Fig.
2), while the first hypothesis can also be decomposed into three hypotheses. At the
household level, there are two adoption decisions to be made, namely, (i) decision to
adopt or not and (ii) the intensity of adoption. The former reflects the initial decision to
adopt EFRP, while the latter indicates how much of the rubber area will be devoted to
rubber intercropping. Like the first hypothesis, regarding the impact of farmers’ percep-
tions of temperature change on the adoption of EFRP at the household level, we can
formulate the following two hypotheses: farmers’ perceptions of increasing temperature
increase the likelihood to adopt EFRP (H.1.1) and also positively affect the adoption
intensity of EFRP (H.1.2). At the plot level, the adoption of EFRP only consists of the
decision to adopt or not, because for practical seasons farmers are likely to intercrop the
entire rubber plot once they have decided to adopt the EFRP on a rubber plot. Thus, the
third sub-hypothesis is at the plot level, namely, farmers perceiving increasing tempera-
ture show a higher likelihood to adopt EFRP in their rubber plots (H.1.3). Overall, the
adoption analysis of EFRP at the household level provides a better understanding of how
rubber farm management has adjusted to regional climate change, while the analysis at the
plot level not only contributes to confirming the robustness of the findings from the
household level but also provide evidence on the impacts of the variables at plot level
including the area, land quality, and slope of a rubber plot on the adoption of EFRP.

2 Alternatively, this study also established a theoretical framework based on conceptualizing adoption as a
continuous optimization problem. The details are presented in Appendix B.
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4 Empirical specification

To better quantify the impact of farmers’ perceptions of temperature change on the adoption of
EFRP and test the proposed hypotheses, this section establishes a set of empirical models by
further controlling for other variables that may influence farmers’ perceptions and adoption
decisions. Following the existing studies (Moser and Ekstrom 2010; Hou et al. 2017), farmers’
climatic adaption behaviors follow a two-stage decision process: the first stage is with regard
to farmers’ perceptions of temperature change and the second stage involves adapting to adopt
EFRP including adoption decision and adoption intensity given farmers’ perceptions of
temperature change.

Referring to the conceptual framework of EFRP adoption in Fig. 2, the empirical models
are specified as follows:

Perceptioni ¼ α0 þ α1X i þ α2IVi þ μi ð1Þ

Adoptioni ¼ β0 þ β1Perceptioni þ β2X i þ vi ð2Þ

Intensityi ¼ γ0 þ γ1Perceptioni þ γ2X i þ ωi ð3Þ

Adoption plotij ¼ δ0 þ δ1Perceptioni þ δ2X i þ δ3Pij þ φij ð4Þ
where i and j represent the jth plot of the ith smallholder rubber farmers. Equation 1 represents
the first stage regarding farmers’ perception of temperature change, wherein the dependent
variable, Perception, indicates whether the farmer i perceives a trend of increasing temperature
(1 = yes, 0 = otherwise). Equations 2, 3, and 4 focus on the adoption behavior of EFRP at the
second stage, wherein the dependent variables, Adoption and Intensity, in Eqs. 2 and 3,
respectively, denotes the adoption decision (1 = yes, 0 = otherwise) and adoption intensity

Perception EFRP adoption

HH adoption

Plot adoption

HH adoption 

intensity

H. 1

Perception

Prediction

H. 1.1

H. 1.2

H. 1.3

Fig. 2 The conceptual framework of EFRP adoption
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(the area of intercropped rubber plantations) of EFRP at the household level; Eq. 4 indicates
the adoption decision ((1 = yes, 0 = otherwise) of EFRP at the plot level. X denotes a vector of
independent variables reflecting the observed socioeconomic characteristics of the respondent,
household, land, and village; P represents the variables regarding the nature of rubber plots. α,
β, γ, and δ are vectors of corresponding parameters to be estimated, while μ, v, ω, and φ are
error terms.

The IV in Eq. 1 is a vector of instrumental variables (IVs) and used to address the potential
endogeneity in estimating the impact of farmers’ perceptions of temperature on the adoption
and adoption intensity of EFRP. The possible source of endogeneity can be summarized as
follows. First, the endogeneity is due to the causality issue. That is, farmers’ perceptions of
increasing temperature may be endogenous in explaining their adoption behaviors, as farmers’
rubber planting behavior in previous years could affect their perceptions of temperature
change. Secondly, there may exist the sample selection bias arising from the fact that farmers
who perceived increasing temperature change may systematically differ from those that did not
perceive (Di Falco et al. 2011; Huang et al. 2015). Also, the unobserved heterogeneity of
smallholder rubber farmers (e.g., cognitive ability) may affect both the perceptions of temper-
ature change and the adoption of EFRP, resulting in inconsistent estimates of the impact of
farmers’ perceptions of temperature change on the adoption of EFRP.

4.1 Identification strategy

Equations 1 and 2 are used to capture the impact of farmers’ perceptions of temperature change
on the adoption of EFRP at the household level. Following previous studies (Lokshin and
Glinskaya 2009; Lokshin and Sajaia 2011), we employ a two-stage ESP model accompanied
by a counterfactual analysis to capture the impact of farmers’ perceptions of temperature on the
adoption of EFRP.3 The ESP model comprised of Eqs. 1 and 2 can be estimated by the FIML
method. The IVs in the selection equation of the ESP model contribute to controlling for the
endogenous problem, while the ESP model also considers the unobservables that could
simultaneously affect the farmer’s perception of increasing temperature and the farmer’s
decision to adopt rubber intercropping. The application of the FIML method to simultaneously
estimate the functions of these two decisions can yield consistent standard errors of the
estimates (Lokshin and Sajaia 2011). Compared with other approaches such as the bivariate
probit with endogenous regressors, the two regimes of outcome equations of the ESP model
provide a better way to conduct counterfactual analysis. Treatment effects including the
average treatment effect on the treated (ATT), the average treatment effect on the untreated
(ATU), and the average treatment effect (ATE) can be further calculated.

Equations 1 and 3 are employed to assess the impact of farmers’ perceptions of temperature
change on the adoption intensity of EFRP at the household level. Following the study of
Maddala (1983), we further use the endogenous treatment effects model (ETE).4 Similar to the
ESP model, the ETE model effectively controls for endogenous problems, while the estimation
of the ETE model directly presents the impact of farmers’ perceptions of temperature.

Equations 1 and 4 are used to estimate the impact of farmers’ perceptions of temperature
change on the adoption of EFRP at the plot level. Controlling for the nature of rubber plots, the
results present the probability of adopting EFRP at a rubber plot with specified characteristics.

3 The details of the setting of the ESP model and counterfactual analysis are presented in Appendix B.
4 The details of the setting of the ETE model are presented in Appendix B.
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Like the estimation of Eqs. 1 and 2, the adoption decision of EFRP at the plot level also
employs the ESP model and a counterfactual analysis.

Finally, a falsification test is well used to check if IV fulfills the exclusion restrictions and
justify its validation (Di Falco et al. 2011). Intuitively, the valid IV should significantly affect
farmers’ perceptions of temperature but does not directly affect the intercropping adoption of
households that do not perceive increasing temperature. As extreme heat waves normally
receive public attention (Hansen et al. 2012) and the perception of climate change appears to
hinge on farmer experience related to climate change (Maddison 2007), we use the variable
measure “whether the household experienced shocks of drought or extreme heat in the past
year” as an IV to identify the perception of increasing temperature. Another potential IV is the
quality change of forests in the village in the past 5 years. Intuitively, these two IVs are
exogenous and meet the validity of IVs, while the results of falsification tests in Table 11 of
Appendix C empirically validate these two IVs.

4.2 Explanatory variables

The detailed definitions and descriptive statistics of the variables used in this study are
summarized in Table 2. Referring to previous studies (Di Falco et al. 2011; Li et al. 2017),
we include the characteristics of the respondent, household, farm, and the local village as
independent variables and control for the fixed effects of county. The characteristics of
respondents including age, gender, educational attainment, and work status are important
factors influencing farmers’ perceptions of climate change and their adaptations (Maddison
2007; Hou et al. 2015). Due to the negative environmental effects of monocultural rubber
plantations, farmers’ perceptions of environmental change should be controlled in estimating
farmers’ perceptions of temperature and adaptative behaviors.5 At household level, the number
of family members, household wealth, the status of land endowment, and distance from the
village to the county center may also play important roles in farmers’ perceptions of climate
change and the adoption of rubber intercropping (Hou et al. 2017; Min et al. 2017a, b). As
XSBN is a minority and mountainous region, this study also includes the variable of ethnicity
and elevation. Access to agricultural extension services may foster farmers’ adoptions of
rubber intercropping. At the same time, the variables at the village level, such as village size,
the proportion of households with members participating in off-farm work, and the situation of
community house, may affect farmers’ perceptions of and adaptations to climate change. The
instrumental variables include household experience in shocks of drought or extreme heat in
the past year and the quality change of forests in the village in the past 5 years. The two IVs
should be correlated with farmers’ perceptions of temperature change but not directly related to
their adoption of rubber intercropping.

Column 3 in Table 2 presents the mean values of these variables, while the rest of the
columns in Table 2 report the differences in the mean values of all variables between the
smallholder farmers that do and do not perceive an increasing temperature trend over the past
15 years and between the smallholders who did and did not adopt rubber intercropping. The
differences in the mean values of most variables are statistically significant. In line with the
results in Table 1, farmers’ perceptions of increasing temperature were positively and signif-
icantly correlated with the adoption of rubber intercropping. Additionally, the information on
the differences in mean values of all the variables provides an indication of the correlations

5 Thank for the suggestion of the referee.

460 Climatic Change (2020) 163:451–480



Ta
bl
e
2

Su
m
m
ar
y
an
d
de
sc
ri
pt
iv
e
st
at
is
tic
s
of

th
e
m
ai
n
va
ri
ab
le
s

V
ar
ia
bl
e

D
ef
in
iti
on

an
d
de
sc
ri
pt
io
n

M
ea
n

Pe
rc
ep
tio

n
m
ea
n

D
if
f.
#

In
te
rc
ro
pp
in
g

D
if
f.
#

1
=
Y
es

0
=
N
o

1
=
Y
es

0
=
N
o

T
em

pe
ra
tu
re

Pe
rc
ep
tio

n
of

in
cr
ea
si
ng

te
m
pe
ra
tu
re

(1
=
Y
es
;
0
=
O
th
er
w
is
e)

0.
58
4

0.
70
0

0.
55
9

0.
14
1*
**

A
ge

A
ge

of
re
sp
on
de
nt

(Y
ea
rs
)

41
.0
92

41
.0
73

41
.1
18

−
0.
04
5

40
.4
45

41
.2
34

−
0.
78
8

G
en
de
r

G
en
de
r
of

re
sp
on
de
nt

(1
=
Fe
m
al
e;
0
=
M
al
e)

0.
31
1

0.
29
4

0.
33
5

−
0.
04
1

0.
38
2

0.
29
5

0.
08
6*

E
th
ni
ci
ty

E
th
ni
ci
ty

of
re
sp
on
de
nt

(1
=
D
ai
;
0
=
O
th
er
w
is
e)

0.
58
3

0.
51
8

0.
67
3

−
0.
15
5*
**

0.
60
0

0.
57
9

0.
02
1

Il
lit
er
ac
y

E
du
ca
tio
n
of

re
sp
on
de
nt

(1
=
Il
lit
er
ac
y;

0
=
O
th
er
w
is
e)

0.
19
5

0.
17
4

0.
22
4

−
0.
05
0*

0.
11
8

0.
21
2

−
0.
09
4*
*

Pr
im

ar
y

E
du
ca
tio
n
of

re
sp
on
de
nt

(1
=
Pr
im

ar
y
sc
ho
ol
;
0
=
O
th
er
w
is
e)

0.
43
5

0.
44
3

0.
42
5

0.
01
8

0.
45
5

0.
43
1

0.
02
4

M
id
dl
e

E
du
ca
tio
n
of

re
sp
on
de
nt

(1
=
M
id
dl
e
sc
ho
ol
;
0
=
O
th
er
w
is
e)

0.
31
8

0.
30
5

0.
33
5

−
0.
03
0

0.
38
2

0.
30
3

0.
07
9*

H
ig
h

E
du
ca
tio
n
of

re
sp
on
de
nt

(1
=
H
ig
h
sc
ho
ol

an
d
ab
ov
e;
0
=
O
th
er
w
is
e)

0.
05
2

0.
07
8

0.
01
6

0.
06
2*
**

0.
04
5

0.
05
4

−
0.
00
9

O
cc
up
at
io
n

M
ai
n
oc
cu
pa
tio

n
of

re
sp
on
de
nt

(1
=
Fa
rm

w
or
k;
0
=
O
th
er
w
is
e)

0.
85
3

0.
35
6

0.
33
1

0.
02
5

0.
35
5

0.
34
3

0.
01
2

E
nv
ir
on
m
en
t

Pe
rc
ep
tio

n
of

en
vi
ro
nm

en
ta
l
de
gr
ad
at
io
n
(1
=
Y
es
;
0
=
O
th
er
w
is
e)

0.
34
5

0.
83
8

0.
87
4

−
0.
03
6

0.
84
5

0.
85
4

−
0.
00
9

H
hs
iz
e

N
um

be
r
of

fa
m
ily

m
em

be
rs

5.
26
4

5.
12
3

5.
46
1

−
0.
33
7*
**

4.
97
3

5.
32
7

−
0.
35
5*
*

L
an
d

T
ot
al
la
nd

ar
ea

(m
u/
pe
rs
on
)

14
.2
12

15
.8
17

11
.9
57

3.
86
0*
**

11
.9
31

14
.7
13

−
2.
78
2*

R
ub
be
r

%
of

ru
bb
er

ar
ea

in
to
ta
l
la
nd

ar
ea

74
.3
74

72
.9
02

76
.4
43

−
3.
54
2*

72
.7
41

74
.7
33

−
1.
99
2

H
ar
ve
st

%
of

ha
rv
es
te
d
ru
bb
er

ar
ea

in
to
ta
l
ru
bb
er

ar
ea

39
.3
87

32
.7
25

48
.7
50

−
16
.0
25
**
*

28
.7
15

41
.7
30

−
13
.0
15
**
*

Se
rv
ic
es

R
ec
ei
ve

ag
ri
cu
ltu

ra
l
ex
te
ns
io
n
se
rv
ic
es

(1
=
Y
es
;
0
=
O
th
er
w
is
e)

0.
24
2

0.
28
9

0.
17
7

0.
11
1*
**

0.
39
1

0.
21
0

0.
18
1*
**

W
ea
lth

V
al
ue

of
ho
us
eh
ol
d
as
se
ts
(1
00
0
Y
ua
n/

pe
rs
on
)

54
.8
36

49
.2
51

62
.6
87

−
13
.4
36
**
*

51
.9
89

55
.4
61

−
3.
47
2

E
le
va
tio

n
E
le
va
tio
n
of

ho
us
eh
ol
d
lo
ca
tio
n
(M

et
er
s
ab
ov
e
se
a
le
ve
l)

75
6.
83
9

78
0.
62
5

72
3.
40
8

57
.2
17
**
*

81
1.
64
6

74
4.
80
6

66
.8
40
**
*

D
is
ta
nc
e

D
is
ta
nc
e
fr
om

th
e
vi
lla
ge

to
th
e
co
un
ty

ce
nt
er

(k
m
)

73
.7
74

77
.1
15

69
.0
79

8.
03
6*
*

72
.1
55

74
.1
30

−
1.
97
5

V
si
ze

N
um

be
r
of

ho
us
eh
ol
ds

in
th
e
vi
lla
ge

85
.0
74

81
.1
85

90
.5
39

−
9.
35
5*
*

90
.5
18

83
.8
78

6.
64
0

O
ff
-f
ar
m

%
of

ho
us
eh
ol
ds

w
ith

m
em

be
rs
pa
rt
ic
ip
at
in
g
in

of
f-
fa
rm

w
or
k

9.
25
9

9.
32
8

9.
16
1

0.
16
6

7.
21
8

9.
70
7

−
2.
48
8*

H
ou
se

C
om

m
un
ity

ho
us
e
in

th
e
vi
lla
ge

(1
=
O
w
n;

0
=
O
th
er
w
is
e)

0.
90
8

0.
91
6

0.
89
8

0.
01
8

0.
87
3

0.
91
6

−
0.
04
3

Sh
oc
ks

(I
V
)

W
he
th
er

th
e
ho
us
eh
ol
d
ex
pe
ri
en
ce
d
sh
oc
ks

of
dr
ou
gh
to

r
ex
tr
em

e
he
at
in

th
e
pa
st
ye
ar

(1
=
Y
es
;
0
=
O
th
er
w
is
e)

0.
15
7

0.
19
6

0.
10
2

0.
09
4*
**

0.
21
8

0.
14
4

0.
07
4*

Fo
re
st
(I
V
)

Fo
re
st
qu
al
ity

in
th
e
vi
lla
ge

in
th
e
pa
st
5
ye
ar
s
(1
=
D
ec
lin

e;
0
=
O
th
er
w
is
e)

0.
48
1

0.
53
2

0.
40
9

0.
12
3*
**

0.
60
0

0.
45
5

0.
14
5*
**

M
en
gl
a

M
en
gl
a
(1
=
Y
es
;
0
=
O
th
er
w
is
e)

0.
40
8

0.
40
3

0.
41
3

−
0.
01
0

0.
23
6

0.
44
5

−
0.
20
9*
**

Ji
ng
ho
ng

Ji
ng
ho
ng

(1
=
Y
es
;
0
=
O
th
er
w
is
e)

0.
45
5

0.
45
1

0.
46
1

−
0.
01
0

0.
61
8

0.
41
9

0.
19
9*
**

M
en
gh
ai

M
en
gh
ai
(1
=
Y
es
;
0
=
O
th
er
w
is
e)

0.
13
7

0.
14
6

0.
12
6

0.
02
0

0.
14
6

0.
13
6

0.
01
0

O
bs
er
va
tio

ns
61
1

35
7

25
4

11
0

50
1

So
ur
ce
:
A
ut
ho
rs
’
su
rv
ey

461Climatic Change (2020) 163:451–480



between these variables and farmers’ perceptions of increasing temperature (or the adoption of
rubber intercropping).

The adoption of rubber intercropping was also influenced by the nature and characteristics
of specific rubber plots. The descriptive statistics of the variables at the plot level are reported
in Appendix A Table 9. The results indicate that about 12.2% of rubber plots are intercropped
with other crops. Referring to the study of Min et al. 2017a, b the variables at the plot level
include the area, quality, and slope of rubber plots.

5 Results

5.1 The adoption decision of EFRP at the household level

Table 3 reports the estimates of the ESP model estimated by the FIML method with robust
standard errors. The second column shows the estimated coefficients of selection Eq. 1 on
whether farmers perceive an increasing trend in temperature over the past 15 years. The third
and fourth columns present the intercropping adoption Eq. 2 for smallholders who do and do
not perceive increasing temperature, respectively. The results of the Wald Chi2 test of
independent equations indicate that the simultaneous estimation of Eqs. 1 and 2 is not superior
to the separate estimations. ρμ1=− 1.081 is significant and negative, suggesting selection bias
may skew the estimation results in a negative direction. The unobserved variables may lead to
a selection bias that underestimates the impact of perceiving increasing temperature on the
adoption of rubber intercropping.

5.1.1 Farmers’ perception of temperature change

The results of the estimation of Eq. 1 suggest that the main influence factors for farmers’
perceptions of temperature change (Table 3, column (2)). Firstly, both instrumental
variables significantly affect farmers’ perceptions of increasing temperature. Farmers
who experienced shocks of drought and extreme heat in the past year are more likely to
perceive increasing temperature. The decline in the forest quality of the located village can
make farmers more likely to perceive increasing temperature. This result may be associ-
ated with the decreasing cooling function of forests due to the decline in forest quality in
the village (Hamada et al. 2013). Compared with those who are illiterate, smallholder
rubber farmers with a high school education or above tend to perceive increasing temper-
ature, consistent with the reality. The number of family members and percentage of rubber
in the harvesting phase negatively affect farmers’ perceptions of increasing temperature.
Farmers who own more land and those who receive agricultural extension services have a
higher probability of perceiving increasing temperature. Additionally, wealthier farmers
are less likely to perceive increasing temperature; this may be due to their location of a
better environment or ownership of better-quality land. Another possible reason might be
that wealthier farmers probably have more durable consumption assets and better living
conditions, such as air conditioners or heating systems, which enable them to adapt to and
focus less on temperature changes (Hou et al. 2015). At the village level, smallholder
rubber farmers located in a village with a community house are found to be more likely to
perceive increasing temperature. This result implies that the community house in a village
may serve as a gathering place for farmers to exchange farming experiences and
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Table 3 Estimation results of the endogenous switching probit model at the household level

Variables Perception Intercropping

Perception = 1 Perception = 0

Age 0.002 0.002 − 0.008
(0.005) (0.006) (0.009)

Gender 0.004 0.093 0.185
(0.120) (0.155) (0.208)

Ethnicity − 0.200 0.395** − 0.223
(0.131) (0.161) (0.282)

Primary 0.194 0.111 0.551*

(0.153) (0.228) (0.310)
Middle 0.064 0.202 0.558*

(0.173) (0.240) (0.310)
High 1.127*** − 0.029 − 8.135***

(0.368) (0.385) (0.824)
Occupation − 0.179 0.297 0.096

(0.157) (0.196) (0.282)
Environment 0.039 − 0.163 0.124

(0.119) (0.152) (0.193)
Hhsize − 0.099** − 0.046 − 0.003

(0.038) (0.058) (0.07)
Land 0.008** − 0.012** − 0.020*

(0.004) (0.005) (0.011)
Rubber 0.002 0.003 0.005

(0.003) (0.003) (0.005)
Harvest − 0.009*** −0.001 − 0.006

(0.002) (0.003) (0.005)
Services 0.308** 0.362* 0.095

(0.137) (0.185) (0.293)
Wealth −0.003** 0.001 0.004**

(0.001) (0.002) (0.002)
Elevation 0.0004 0.002*** 0.001

(0.0005) (0.001) (0.001)
Distance − 0.002 − 0.005** − 0.0005

(0.002) (0.003) (0.003)
Vsize − 0.001 0.004** 0.002

(0.001) (0.002) (0.002)
Off-farm − 0.006 − 0.007 − 0.0166*

(0.004) (0.007) (0.010)
House 0.609*** − 1.153*** − 0.276

(0.210) (0.315) (0.343)
Shock (IV) 0.496***

(0.142)
Forest (IV) 0.297***

(0.110)
Counties Controlled Controlled Controlled
Constant 0.131 − 1.356* − 2.895***

(0.570) (0.819) (1.088)
ρμ1/ρμ0 − 1.081*** − 0.784

(0.377) (0.799)
N 611
Wald Chi2 91.37***

Chi2 (Wald test of independent equations) 9.35***

Robust standard errors in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01
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information, including those related to regional climate change, thereby enhancing
farmers’ perceptions of increasing temperature from social interactions.

5.1.2 Farmers’ adoption of EFRP

We now turn to the estimation results for Eq. 2 by accounting for the endogenous switching in
the adoption function of EFRP. The estimation results for the rubber intercropping adoption
function among smallholders who perceive increasing temperature are almost completely
different from that of the adoption function among smallholders who do not perceive increas-
ing temperature (Table 3, columns 3 and 4). The differences in the coefficients of rubber
intercropping adoption between the smallholders who perceive increasing temperature and
those who do not illustrate the existence of heterogeneity in the sample.

For smallholder rubber farmers who perceive increasing temperature, the estimation results
for rubber intercropping adoption are shown in column 3 of Table 3. Interestingly, once Dai
ethnic farmers perceive increasing temperature, they have a higher probability of adopting
rubber intercropping. Additionally, smallholders with small land sizes, who receive agricul-
tural extension services, whose farms are at higher elevation, and whose farms are closer to the
county center, tend to adopt the EFRP model in terms of rubber intercropping.

The estimation results for intercropping adoption among smallholders who do not perceive
increasing temperature are reported in column 4 of Table 3. Compared with farmers who are
illiterate, those with primary and middle school education levels are more likely to adopt
rubber intercropping. However, farmers with a high school education level and above are less
likely to adopt rubber intercropping. These results imply that the correlation between the
possibility of adopting intercropping and farmers’ education level is an inverted U-shaped
curve. This finding is inconsistent with the study of Maddison (2007), which found a linear
and positive impact of education on adoption of the adaptation measure. Additionally, the
findings for the variable “household wealth” are in line with previous studies (Iqbal et al. 2006;
Min et al. 2017a), suggesting that farmers are more likely to adopt intercropping with less
financial constraints proxied by asset endowment.

The cumulative distributions of the predicted probabilities of adopting rubber intercropping
between farmers who perceive increasing temperature and farmers who do not perceive
increasing temperature are shown in Fig. 3 in the Appendix A. Visually, farmers who perceive
increasing temperature have a higher probability of adopting rubber intercropping than others,
illustrating that farmers’ perceptions of increasing temperature are positively correlated with
their likelihood of adopting rubber intercropping.

5.1.3 Counterfactual analysis

The first row in Table 4 presents the treatment effects of farmers’ perceptions of temperature
change on the adoption of the EFRP model. Regardless of ATE, ATT, and ATU, the impacts
of farmers’ perceptions of increasing temperature on the adoption of rubber intercropping are
always significantly positive. In the counterfactual case (ATT), smallholder rubber farmers
who perceive increasing temperature would have an 18.8% lower probability of adopting
intercropping if they did not perceive increasing temperature. For another counterfactual case
(ATU), smallholders who do not perceive increasing temperature would have 49.9% higher
probability of adopting rubber intercropping if they perceived increasing temperature. Finally,
in the counterfactual case (ATE), the effect of farmers’ perceptions of increasing temperature
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on the adoption of rubber intercropping by a farmer randomly selected from the population is
31.9%. These results confirm that farmers’ perceptions of increasing temperature can encour-
age farmers to implement the EFRP model, particularly among smallholders who do not
actually perceive an increasing temperature trend.

The simulated results of ATT, ATE, and ATU according to several observable character-
istics also reveal the heterogeneity in the effects of perceiving increasing temperature on the
adoption of rubber intercropping (Table 4). First, the poorest smallholders have the largest
positive ATT, ATU, and ATE for the adoption of rubber intercropping. This finding confirms
that for the farmers perceiving increased temperature, less wealthy farmers are more likely to
adopt rubber intercropping because the intercropped crops may provide additional income
sources or household food consumption options. Likewise, for the probability of rubber
intercropping, the positive ATT, ATU, or ATT decreases with the scale of the farm. In other
words, for smallholders with the smallest land size, the impacts of perceiving increasing
temperature on the adoption of rubber intercropping are always the largest. This may be
because intercropping can be an intensification strategy for the farmers with less land to work
with.

Interestingly, for smallholders receiving agricultural extension services, ATT, ATU, and
ATT are always the highest. Particularly, from the perspective of ATU, smallholders who
receive agricultural extension services but do not perceive increasing temperature have a
66.6% higher probability of adopting rubber intercropping if they perceive the increasing
temperature trend. Moreover, the largest positive ATT, ATU, and ATE for the probability of
adopting rubber intercropping are found for smallholders in villages without a community
house. This result implies that enhancing farmers’ perceptions of increasing temperature in
villages without a community house would have a larger impact on the adoption of rubber
intercropping.

Table 4 Simulated effects of farmers’ perceptions of increasing temperature on rubber intercropping by
characteristics

Variables Average treatment effect
on the treated (ATT)#

Average treatment effect
on the untreated (ATU)

Average treatment
effect
(ATE)

All samples 0.188*** 0.499*** 0.319***
By the characteristics of households, farms, and villages
Household wealth
1st quantile 0.230*** 0.516*** 0.333***
2nd quantile 0.180*** 0.494*** 0.305***
3rd quantile 0.148*** 0.489*** 0.319***
Land size
1st quantile 0.234*** 0.550*** 0.388***
2nd quantile 0.190*** 0.480*** 0.314***
3rd quantile 0.150*** 0.449*** 0.254***
Receiving agricultural extension services
Yes 0.306*** 0.666*** 0.408***
No 0.141*** 0.463*** 0.290***
Community house
Yes 0.181*** 0.476*** 0.303***
No 0.266*** 0.700*** 0.474***

Source: Authors’ calculation

#t test; * p < 0.10, ** p < 0.05, *** p < 0.01
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5.2 The adoption intensity of EFRP at the household level

Table 5 reports the estimation results of the endogenous treatment effects model. Farmers’
perceptions of increasing temperature and their adoption intensity of rubber intercropping are
estimated simultaneously. The results on the perceptions of temperature in column 2 of Table 5
are consistent with those in Table 3. Column 3 in Table 5 shows the estimation results of the
adoption intensity of rubber intercropping. In line with the significant and positive treatment
effects in Table 4, the impact of farmers’ perceptions of increasing temperature on the adoption
intensity of rubber intercropping is significantly positive. For smallholders perceiving increas-
ing temperature, on average, they adopt 3.359 mu more intercropping than those who did not
perceive increasing temperature.

Moreover, the adoption intensity of rubber intercropping is also significantly affected by
elevation, village size, and the community house. Smallholders living in a place with higher
elevation, in a bigger village, or in a village without a community house tend to adopt more
rubber plantations for intercropping.

5.3 The adoption decision of EFRP at the plot level

An endogenous switching probit model including the variables at plot level is further
employed to detect the impacts of the variables at the plot level on the adoption of rubber
intercropping and further check for the robustness of the results regarding the impact of
farmers’ perceptions of temperature change. Table 6 reports the results estimated by using
the data at the plot level, showing the significant impacts of the variables at plot level,
including area, land quality, and slope of a plot on farmers’ perceptions of temperature. For
the smallholders without perceiving increasing temperature change, plot area also has a
significant and positive effect on the adoption of rubber intercropping.

Based on the estimation results of Table 6, we further simulate the treatment effects of
farmers’ perceptions of increasing temperature on the probability of intercropping adoption at
the plot level and compare these treatment effects by heterogeneities of the characteristics
including household wealth, land size, access to agricultural extension services, and commu-
nity house. As shown in Table 7, the treatment effects including ATT, ATU, and ATE at the
plot level are lower than those at the household level. Moreover, the correlations between
treatment effects and the variables of household wealth, land size, access to agricultural
extension services, and community house are similar to those revealed by Table 4. In addition
to the sizes of treatment effects, the results in Tables 4 and 7 are almost consistent. Hence, the
main findings of this study have also been confirmed at the plot level.

5.4 Robustness check

Firstly, a probit model with a discrete endogenous regressor and a tobit model with a discrete
endogenous regressor using a two-step regression approach are further employed to check for
the impacts of farmers’ perceptions of regional climate change on the adoption and adoption
intensity of the EFRP model. In the first step, a probit regression with robust standard errors is
estimated for farmers’ perceptions of increasing temperature. The proposed IV “whether the
household experienced shocks of drought and extreme heat in the past year” and “forest
quality of the village in the past 5 years” are also included. In the second step, the predicted
probability of perceiving increasing temperature from the first step of the regression is included
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in the probit model for rubber intercropping adoption and the tobit model for the adoption
intensity of rubber intercropping to control for potential endogeneity, while a bootstrap
procedure with 2000 bootstrap iterations is used to further adjust the standard errors to obtain

Table 5 Results of endogenous treatment effects model at the household level

Perception Adoption intensity

Perception 3.359*

(2.022)
Age 0.001 − 0.047

(0.005) (0.060)
Gender 0.029 − 0.682

(0.122) (0.983)
Ethnicity − 0.229* − 0.680

(0.129) (1.358)
Primary 0.184 1.413

(0.153) (1.322)
Middle 0.067 1.028

(0.174) (1.415)
High 1.082*** − 2.224

(0.367) (1.906)
Occupation − 0.205 − 0.138

(0.160) (1.156)
Environment 0.030 − 1.372

(0.118) (1.003)
Hhsize − 0.104*** 0.911

(0.039) (0.618)
Land 0.008* 0.047

(0.004) (0.050)
Rubber 0.002 0.031

(0.003) (0.026)
Harvest − 0.009*** − 0.025

(0.002) (0.027)
Services 0.314** 1.784

(0.135) (1.192)
Wealth − 0.003** 0.024

(0.001) (0.016)
Elevation 0.0003 0.019**

(0.0004) (0.008)
Distance − 0.002 − 0.002

(0.002) (0.016)
Vsize − 0.001 0.027**

(0.001) (0.011)
Off-farm − 0.006 − 0.038

(0.004) (0.031)
House 0.642*** − 3.630*

(0.209) (1.862)
Shock (IV) 0.516***

(0.157)
Forest (IV) 0.237*

(0.124)
Counties Controlled Controlled
Constant 0.241 − 17.86**

(0.573) (8.943)
N 611
Log likelihood − 2848.36
Chi-squared 43.11***

Robust standard errors in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01
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more accurate cluster-robust inference. Accordingly, Table 10 of Appendix A reports the
estimation results, which further confirm the significant and positive impact of perceiving
increasing temperature on the adoption and adoption intensity of rubber intercropping.

Secondly, the heterogeneity in the effect of farmers’ perceptions of temperature change
based on unobserved characteristics is also investigated using the marginal treatment effect
(MTE) framework under the estimation of endogenous switching probit model at the house-
hold level. The results are presented in Fig. 5 of Appendix D and not only suggest that
smallholders who are more likely to perceive increasing temperature are more likely to adopt
rubber intercropping but also confirm the presence of unobservable heterogeneity in the
impacts of farmers’ perceptions of increasing temperature on farmers’ decisions to adopt
rubber intercropping. Overall, the finding that perceiving increasing temperature can encour-
age farmers to implement the EFRP model in terms of rubber intercropping is solid and robust.

6 Concluding remarks

In recent years, the EFRP model has been proposed to mitigate the negative environmental
effects of monoculture rubber plantations in XSBN. Using household survey data, this article
investigates the impacts of farmers’ perceptions of temperature change on their

Table 6 Estimation results of the endogenous switching probit model at the plot level

Variables Perception Intercropping

Perception = 1 Perception = 0

Plot area 0 .482** 0.001 0.008*

Land quality (0.069) (0.003) (0.005)
Below average #
Average − 0.183* 0.236 − 0.143

(0.102) (0.161) (0.196)
Above average 0.226** − 0.049 0.046

(0.107) (0.166) (0.225)
Land slope
Slope = flat #
0% < Slope ≤ 25% − 0.287*** − 0.099 0.142

(0.095) (0.149) (0.261)
25% ≤ Slope < 45% − 0.413*** − 0.043 0.346

(0.088) (0.152) (0.242)
Slope ≥ 45% − 0.251*** − 0.102 0.111

(0.091) (0.139) (0.244)
Shocks (IV) 0.482***

(0.069)
Forest (IV) 0.270***

(0.055)
Control for other variables Yes Yes Yes
Constant 0.771*** − 2.665*** − 4.133***

(0.285) (0.489) (0.728)
ρμ1/ρμ0 − 0.389* − 0.420

(0.209) (0.315)
N 3236
Wald Chi2 514.98***

Chi2 (Wald test of independent equations) 5.37*

#Reference group; robust standard errors in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01
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implementation of the EFRPmodel. The results reveal that farmers’ perceptions of temperature
change are determined by the experience of shocks related to regional climate change and their
socioeconomic characteristics, while perceiving increasing temperature can encourage farmers
to adopt the EFRP model in terms of intercropping. Farmers’ perceptions of temperature
change appear to be a mechanism through which regional climate change impacts farmers’
mitigation behavior.

The findings from this study have several policy implications. First, there is a need to
improve farmers’ perceptions of increasing temperature to promote the implementation of the
EFRP model among smallholders in XSBN. Second, enhancing perceptions of temperature
among smallholders with specific characteristics can more efficiently encourage farmers to
adopt EFRP. Improving perceptions of increasing temperature among smallholders who have
less wealth and small land size, receive agricultural extension services, live in a higher
elevation region, reside in a village close to the county center, or reside in a village without
a community house can greatly promote the adoption of rubber intercropping when compared
with the counterfactual cases. Additionally, the provision of agricultural extension services and
the establishment of a community house in a village could also contribute to improving
farmers’ perceptions of increasing temperature. Hence, focusing solely on increasing farmers’
perceptions of regional climate change to increase climate resilience may be limited; policies
must jointly consider both improving the targeted farmers’ perceptions of regional climate
change and conducting other agricultural programs as mitigation strategies. Finally, the
program of EFRP should be promoted by implementing measures that target the specific
smallholder rubber farmers, for instance, training smallholders the EFRP program by the
agricultural extension services.

Just as farmers have been confronted with increasing regional temperatures in the rubber
planting region and are concerned with the sustainability of smallholder rubber farming in the
upper Mekong region, we believe that the findings of this study have somewhat reference
implications for rubber planting, particularly for other areas of the Mekong region such as

Table 7 Simulated effects of farmers’ perceptions of increasing temperature on rubber intercropping by
characteristics based on the results at the plot level

Variables Average treatment effect
on the treated (ATT)#

Average treatment effect
on the untreated (ATU)

Average treatment
effect
(ATE)

All samples 0.104*** 0.172*** 0.133***
By the characteristics of households, farms, and villages
Household wealth
1st quantile 0.117*** 0.150*** 0.128***
2nd quantile 0.098*** 0.150*** 0.120***
3rd quantile 0.095*** 0.203*** 0.150***
Land size
1st quantile 0.118*** 0.198*** 0.157***
2nd quantile 0.101*** 0.161*** 0.128***
3rd quantile 0.094*** 0.151*** 0.114***
Receiving agricultural extension services
Yes 0.189*** 0.310*** 0.226***
No 0.069*** 0.142*** 0.103***
Community house
Yes 0.096*** 0.150*** 0.119***
No 0.188*** 0.384*** 0.272***

Source: Authors’ calculation
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Laos, Thailand, and northern Vietnam. Moreover, considering the fact that the massive
expansion of other tree crop plantations such as oil palm and coffee monocultures may also
lead to regional climate change in the planting regions, improving local farmers’ perceptions of
regional climate change is likely to play a role in promoting tree crop-based agroforestry
systems, which to some extent can mitigate the change of regional climate.
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Appendix A tables and figures

Table 8 Crops intercropped with rubber at the plot level

Categories Number of plots Percent

Perennial crops
Tea 184 46.70%
Coffee 21 5.33%
Banana 5 1.27%
Fruits and other economic forest trees 18 4.57%

Annual crops
Maize 73 18.53%
Sorghum 20 5.08%
Upland rice 4 1.02%
Hemp 3 0.76%
Vegetables 3 0.76%
Cotton 2 0.51%
Millet 1 0.25%
Groundnuts 1 0.25%

Other crops 59 14.97%
Total 394 100%

Table 9 Summary and descriptive statistics of the variables at the plot level

Variable Definition and description Mean Std. dev.

Intercrop (plot) Intercrop on a rubber plot (1 = Yes; 0 = Otherwise) 0.122 0.327
Plot area Area of a rubber plot (mu) 13.651 17.046
Land quality Soil quality of a rubber plot
Below average (1 = Yes; 0 =Otherwise) 0.065 0.246
On average (1 = Yes; 0 =Otherwise) 0.617 0.486
Above average (1 = Yes; 0 =Otherwise) 0.318 0.466
Land slope Land slope of a rubber plot
Slope = Flat (1 = Yes; 0 =Otherwise) 0.092 0.288
0% < Slope ≤ 25% (1 =Yes; 0 =Otherwise) 0.205 0.404
25% ≤ Slope < 45% (1 =Yes; 0 =Otherwise) 0.388 0.487
Slope ≥ 45% (1 =Yes; 0 =Otherwise) 0.315 0.465
Observations 3236

Source: Authors’ survey
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Table 10 Probit regressions for farmers’ perceptions of increasing temperature and the adoption of rubber
intercropping at the household level

Perception of increasing
temperature

Adoption of rubber
intercropping

Area of rubber plantations with
intercropping (tobit)

bP 3.077*** 104.348***

(0.940) (39.422)
[0.667] [18.786]

Shock (IV) 0.505***

(0.157)
Forest (IV) 0.242*

(0.124)
Control for other

variables
Yes Yes Yes

Constant 0.252 − 4.447*** − 195.593***
(0.573) (1.117) (57.011)

N 611 611 611
pseudo R2 0.134 0.181 0.060
Log likelihood − 359.12 − 235.96 − 703.443
Wald Chi2 87.84*** 49.21*** 43.45***

Robust standard errors in parentheses in the first column; bootstrap standard errors in parentheses in the second
column; marginal effects in square brackets; * p < 0.10, ** p < 0.05, *** p < 0.01

Fig. 3 The location of XSBN and the distribution of sample townships
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Appendix B Models

Theoretical framework

In this study, we focus on smallholder rubber farmers’ decisions to adopt the EFRP which is
proxied by rubber intercropping. This decision is assumed to be made by the farmer after the
decision of land allocation for rubber farming has been completed. The farmer’s utility from
rubber farming is assumed to include two components: (1) the utility derived from the profit of
rubber farming and intercropping, which is affected by the weather condition during the crop
season, and (2) the utility derived from improved environmental conditions when adopting
rubber intercropping under the weather condition during the crop season. Thus, the farmer
should determine the proportion of the rubber plantation to allocate for intercropping to
maximize the total utility from rubber farming.

Specifically, the expected profit of rubber farming and intercropping (π) is assumed to be
determined as follows:

π ¼ ∫ y−c xð Þ½ � f yð Þdy
s:t: ∑2

i¼1xi ¼ 1
ð5Þ

where the vector x = (x1, x2), where x1 and x2 represent the proportions of rubber plantations
allocated for intercropping and monoculture rubber plantations, respectively. L is defined as
the planting area of natural rubber available to the farmer. y (y = y(x| L)) is a vector of outputs
corresponding to x given the planting area of rubber (L), while c(x) is the cost function
corresponding to x. f(y) is the farmer’s subjective probability density function for y, which can
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Fig. 4 Cumulative distribution of probabilities of adopting rubber intercropping between farmers who perceive
increasing temperature and farmers who do not perceive increasing temperature
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be assumed to be solely related to the weather condition (wt) in the coming crop season (Bai
et al. 2015). It is assumed that all smallholder rubber farmers in XSBN face the same market
prices of rubber, intercrops, and inputs in the observation year; therefore, the price variables
are omitted in the profit function (5).

Moreover, we further assume that the environmental utility of the farmer’s rubber farming
depends on the planting area of natural rubber (L), the proportions of intercropping and
monoculture rubber plantations (x), and the weather condition (wt). Thus, the environmental
utility can be expressed as

U Eð Þ ¼ h x; L;wtð Þ ð6Þ

By combining the profit function (5) and the environmental utility function (6), the farmer’s
utility maximization problem can be written as

max
x

U ¼ max
x

U πð Þ þ U Eð Þ½ � s:t: ∑2
i¼1xi ¼ 1 ð7Þ

where U indicates the total utility from rubber farming, while U(π) denotes the utility from the
profit of rubber farming and intercropping.

As farmers do not know the weather condition in the coming crop season (wt), they make
the decision on x based on their predictions of the weather condition. Here, we assume that
farmers’ predictions of weather condition in the coming crop season ( bwt) rely on the real
weather condition in previous years and their perceptions of weather condition change in
previous years. Thus, bwt can be expressed as

bwt ¼ g wt−1;Pð Þ ð8Þ
where wt − 1 denotes the real weather condition in previous years, while P represents farmers’
perceptions of the weather condition change in previous years.

By incorporating the weather condition prediction function (8) into the utility maximization
problem (7), the optimal choice of x can be conceptually derived as

xt
* ¼ z P; Lð Þ ð9Þ

where the real weather condition in previous years (wt − 1) is omitted as there is an implicit
assumption that all rubber farmers faced the same weather condition in previous years. Given
that temperature is a primary measurement of weather condition, the perception of a change in
weather condition (P) can, to some extent, be proxied by the perception of temperature change
(P′). Then, the optimal proportion of rubber plantations allocated for intercropping can be
expressed as

x1*¼z0 P0; Lð Þ ð10Þ
According to Eq. A6, two hypotheses could be simply derived as follows. First, as x1∗ > 0
indicates that the farmer adopts intercropping, the hypothesis (1) is that the adoption of rubber
intercropping is affected by the perception of temperature change (P′). Second, Eq. 10 shows
the land allocated for rubber intercropping is a function of farmers’ perceptions of temperature
changes; thus, we propose the hypothesis (2) that farmers’ perceptions of temperature change
(P′) also influence the adoption intensity of rubber intercropping.
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Endogenous switching probit model and counterfactual analysis

According to Lokshin and Glinskaya (2009), a farmer’s propensity to perceive increasing
temperature can be expressed in a linear form as

P*
i ¼ γZi þ μi ð11Þ

where subscript i represents the farmer. Zi denotes a vector of independent variables reflecting
the socioeconomic characteristics of the respondent, household, land, and located village,
while γ is a vector of corresponding parameters to be estimated. μi is an error term. Therefore,
the observed farmer’s perception of increasing temperature (Pi) can be expressed as

Pi ¼ 1 if P*
i ≥0

0 otherwise

�
ð12Þ

where Pi = 1 represents that the farmer perceives the trend in increasing temperature in the
local area, while Pi = 0 denotes that the farmer does not perceive this trend.

The propensity of the farmer’s household to adopt rubber intercropping as a mitigation
behavior for the farmer’s perception of increasing temperature is expressed as

A*
iP ¼ βPX i þ viP ð13Þ

where the subscript P denotes the two regimes presented in Eq. 12. Xi is a vector of variables
regarding the characteristics of the respondent, household, land, and village, while βPis a
regime-specific vector of the parameters to be estimated; viP is a regime-specific error term.

Hence, by combining Eqs. 12 and 13, the observed mitigation behavior regarding rubber
intercropping can be written as follows:

Ai1 ¼ 1 if A*
i1≥0

0 otherwise

�
P ¼ 1ð Þ ð14aÞ

Ai0 ¼ 1 if A*
i0≥0

0 otherwise

�
P ¼ 0ð Þ ð14bÞ

where Eqs. 14a and 15b indicate whether the farmer adopts rubber intercropping under the
conditions of P = 1 and P = 0, respectively.

According to previous studies (Lokshin and Glinskaya 2009), the error terms (μi, vi0, vi1)
from Eqs. 12, 14a, and 14b are assumed to be jointly normally distributed with a zero-mean
vector and correlation matrix:

Ωm ¼
1 ρμ0 ρμ1

1 ρ01
1

0@ 1A ð15Þ

where the terms ρμ0 and ρμ1 are the correlations between vi0, vi1, and μ and ρ01 is the correlation
between vi0 and vi1. However, as Ai1 and Ai0 are never observed simultaneously, the joint
distribution of (v0, v1) is not identified; accordingly, ρ01 cannot be estimated. Hence, following
the study by Lokshin and Sajaia (2011), we further assume that γ is estimable only up to a
scalar factor (ρ01 = 1); therefore, this model can be identified by nonlinearities in its functional
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form. Following the study by Lokshin and Glinskaya (2009), we can express the log likelihood
functions for the simultaneous system of Eqs. 12, 14a, and 14b as follows:

ln ξð Þ ¼ ∑
Pi≠0;Ai≠0

ln Φ2 β1X i; γZi; ρμ1
� �n o

þ ∑
Pi≠0;Ai¼0

ln Φ2 −β1X i; γZi;−ρμ1
� �n o

þ ∑
Pi¼0;Ai≠0

ln Φ2 β0X i;−γZi;−ρμ0
� �n o

þ ∑
Pi¼0;Ai¼0

ln Φ2 −β0X i;−γZi; ρμ0
� �n o

ð16Þ

where Φ2 is the cumulative function of a bivariate normal distribution. Accordingly, function
(20) can be estimated by the FIML method. The ESP model takes into account the unobserved
variables that could simultaneously affect the farmer’s perception of increasing temperature
and the farmer’s decision to adopt rubber intercropping. The application of the FIML method
to simultaneously estimate the functions of these two decisions can yield consistent standard
errors of the estimates (Lokshin and Sajaia 2011).

The impact of a farmer’s perception of increasing temperature on the adoption of rubber
intercropping can be defined as treatment effects, including the effect of treatment on the
treated (TT), the effect of the treatment on the untreated (TU), and the treatment effect (TE).
Following previous studies (Lokshin and Glinskaya 2009; Lokshin and Sajaia 2011), the
formulas of these treatment effects are given as:

TT xð Þ ¼ Pr A1 ¼ 1jP ¼ 1;X ¼ xð Þ−Pr A0 ¼ 1jP ¼ 1;X ¼ xð Þ ð17Þ

TU xð Þ ¼ Pr A1 ¼ 1jP ¼ 0;X ¼ xð Þ−Pr A0 ¼ 1jP ¼ 0;X ¼ xð Þ ð18Þ

TE xð Þ ¼ Pr A ¼ 1jX ¼ x½ �−Pr A ¼ 0jX ¼ x½ � ð19Þ
Furthermore, the average treatment effect on the treated (ATT), the average treatment effect on
the untreated (ATU), and the average treatment effect (ATE) can be obtained from Eqs. 17, 18,
and 19 by averaging TT(x), TU(x), and TE(x) over the sample, respectively. ATT reflects the
average difference between the predicted probability of adopting intercropping by a household
that perceives increasing temperature and the predicted likelihood of adopting intercropping
for the household had they not perceive increasing temperature. ATU is the average expected
effect of perceiving increasing temperature on the probability that households with observed
characteristic X, which do not perceive increasing temperature, would adopt intercropping.
ATE is the average impact of perceiving increasing temperature on the probability that a
household randomly drawn from the households with characteristics x would adopt
intercropping. Additionally, the ATT, ATU, and ATT for a subgroup of the households are
the averages of TT(x), TU(x), and TE(x) for that subgroup (Lokshin and Sajaia 2011).

Endogenous treatment effects model

Following Maddala (1983), the adoption intensity of rubber intercropping can be expressed as
a treatment effects model:

yi ¼ βX i þ γPi þ εi ð20Þ
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where the definitions of Xi and Pi are the same as in Eq. 13. β and γ are parameters to be
estimated, while εi is an error term. Meanwhile, εi and μi (in Eq. 11) are assumed to be
bivariate normal with zero and covariance matrix:

εi
μi

� �
∼N 0

0

� �
σ2ε ρσε
ρσε 1

� �� �
ð21Þ

where ρ is the correlation coefficient between εi and μi. According to Maddala (1983), the log
likelihood for observation i can be written as:

lnLi ¼
lnΦ

τZi þ yi−βX i−δð Þρ=σffiffiffiffiffiffiffiffiffiffi
1−ρ2

p( )
−
1

2

yi−βX i−δ
σ

� �2

−ln
ffiffiffiffiffiffi
2π

p
σ

� �
Pi ¼ 1

lnΦ
−τZi− yi−βX ið Þρ=σffiffiffiffiffiffiffiffiffiffi

1−ρ2
p( )

−
1

2

yi−βX i

σ

� �2

−ln
ffiffiffiffiffiffi
2π

p
σ

� �
Pi ¼ 0

8>>>><>>>>: ð22Þ

where Φ(∙) is the cumulative distribution function of the standard normal distribution. Thus,
Eqs 10 and 12 could be simultaneously estimated by maximum likelihood estimation.

Appendix C Test

The estimation results of a falsification test for the validity of the proposed two IVs are
reported in Appendix Table 11. The results show that the proposed two instrumental variables
significantly affect farmers’ perceptions of increasing temperature. However, for farmers who
do not perceive increasing temperature, the proposed two IVs have insignificant impacts on the
adoption of rubber intercropping. The proposed two instrumental variables meet the exclusion
restriction. Hence, the falsification test empirically confirms the validity of the proposed two
instrumental variables to control for the endogeneity of farmers’ perceptions of temperature
change in explaining farmers’ implementation of the EFRP model.

Table 11 Falsification test for the validity of the instrumental variable

Variables Perception Intercropping
(Perception = 0)

Shocks (IV) 0.505*** 0.129
(0.157) (0.366)

Forest (IV) 0.242** 0.488
(0.124) (0.307)

Control for other variables Yes Yes
Constant 0.252 − 3.117**

(0.573) (1.383)
N 611 250#
pseudo R2 0.134 0.182
Log likelihood − 359.15 − 79.77
Chi-squared 87.84*** 35.54***

Robust standard errors in parentheses; * p < 0.10, ** p < 0.05, *** p < 0.01

#4 observations are automatically dropped due to predicting failure
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Appendix D Unobserved heterogeneity

The effect of perceiving increasing temperature on the adoption of rubber intercropping by
households can vary by observed household characteristics X and unobservables μ (Lokshin
and Glinskaya 2009). To account for the unobserved heterogeneity, we can further simulate
the MTE:

MTE x;μð Þ ¼ Pr A1 ¼ 1j X ¼ x;μ ¼ μ
� �

−Pr A0 ¼ 1j X ¼ x;μ ¼ μ
� �

ð23Þ

The MTE identifies the effect of perceiving increasing temperature on households induced to
adopt rubber intercropping because of perceiving increasing temperature (Heckman and
Vytlacil 2001; Lokshin and Glinskaya 2009).

Based on the estimation results of ESR, the simulated MTE is 0.342, nearly equal to the
ATE, and heterogeneity in the effects of perceiving increasing temperature based on unob-
served characteristics is also found (Fig. 5). Following the MTE framework (Lokshin and
Glinskaya 2009), Fig. 5 plots the MTE of perceiving increasing temperature on the adoption of
rubber intercropping against the normalized values of unobservable component (μ) at the
household means for Xs according to Eq. 14a and 14b. The estimates of the MTE for
perceiving increasing temperature on the adoption of rubber intercropping are monotonically
increasing in μ, indicating that smallholders who are more likely to perceive increasing
temperature are also more likely to adopt rubber intercropping. Additionally, the MTEs of
perceiving increasing temperature on the adoption of rubber intercropping are not flat, which
confirms the presence of unobservable heterogeneity in the impacts of farmers’ perceptions of
increasing temperature on farmers’ decisions to adopt rubber intercropping.
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Fig. 5 Heterogeneities in the effects of perceiving increasing temperature on the adoption of rubber intercropping
by unobserved component (95% confidence interval)
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