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ABSTRACT

In the 21+ century, global agriculture faces unprecedented challenges due to the complex interplay between climate change, crop
dynamics, and economic factors. Frameworks that integrate climate, crops, and economics models have been instrumental in
assessing these impacts. However, these frameworks have some limitations, such as neglecting critical value chain effects. This
study aims to bridge this gap by introducing a unique climate-crop-value chain framework that considers the entire agricultural
value chain, connecting climate science, agriculture science, and economics. By analyzing the agricultural value chain, this
framework captures the interconnectedness and ripple effects of climate impacts beyond the affected crop. Improving modeling
frameworks like this contributes to the ongoing dialogue on sustainable agricultural development, guiding future research and
policy interventions to ensure global food security in a changing climate. Addressing gaps in understanding the economic
consequences on the agricultural value chain is crucial for a more comprehensive and actionable approach to climate resilience in

agriculture.
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1 Introduction

Agriculture, a cornerstone of global food security and economic
stability, confronts unprecedented challenges in the 21* century
due to the intricate interplay of climate change, crop production
dynamics, and economic factors. The escalating frequency and
intensity of extreme weather events, coupled with shifts in
precipitation patterns and temperature fluctuations, pose
significant threats to crop yields and, consequently, to global food
availability. Concurrently, the economic repercussions of these
climate-induced changes reverberate through the agricultural
sector. In order to comprehensively address the impact of climate
change on agriculture, it is imperative to consider the entire
agricultural value chain. The agricultural value chain encompasses
the various stages of production, processing, distribution, and
consumption of agricultural products.

Climate-crop modeling is essential for grasping climate change
impacts on agriculture and has been extensively covered in the
literature (e.g., Global Gridded Crop Model Intercomparison
(GGCMI)™; the Inter-Sectoral Impact Model Intercomparison
Project (ISI-MIP)", and Modelling Agriculture with Climate
Change for Food Security (MACSUR)". However, the exclusive
use of climate-crop modeling reveals limitations. For example,
these models simplify agricultural systems, potentially leading to
discrepancies with real-world observations". While proficient in
biophysical aspects, they often overlook crucial socioeconomic
factors shaping agricultural outcomes, such as economic
conditions and policy interventions”. Relying solely on climate-
crop models may underestimate the role of adaptive strategies and
mitigation measures, neglecting the resilience and adaptability of

agricultural systems". Uncertainties in climate projections and
dynamic feedback loops within agricultural systems further
complicate accurate predictions” Y. Acknowledging these
limitations is crucial for a more comprehensive and detailed
understanding of climate change impacts on agriculture.

The scientific community has endeavored to develop
sophisticated modeling frameworks that integrate climate, crop,
and economic components in response to these challenges. One
pioneering initiative in this domain is the Agricultural Model
Intercomparison and Improvement Project (AgMIP). Launched
as a collaborative effort among scientists and researchers globally,
AgMIP aims to enhance agricultural models and their utility in
climate impact assessments”. Another prominent player in
integrating economic considerations into agricultural modeling is
the Consortium of International Agricultural Research Centers
(CGIAR)'s Research Program on Climate Change, Agriculture,
and Food Security (CCAFS), which collaborates with models such
as AgMIP to assess the impact of climate change on crop yields
and food security. Additionally, the program incorporates outputs
from global climate models and utilizes tools like the IMPACT
model to analyze the economic implications of climate change on
agriculture and food security”. On a national scale, China’s
CAPSiM model platform (China Agriculture Policy Simulation
Model, CAPSiM) plays a crucial role in evaluating climate change
effects on the agricultural economy™’.

Many prior studies have focused on the direct effects of climate
change on individual crops, such as the ones using the modeling
framework mentioned above, overlooking the comprehensive
repercussions for the entire agricultural value chain. To fully grasp
climate impacts, it is essential to recognize the interdependence of
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different sectors within the economy, allowing for exploration of
the economic repercussions on the agricultural value chain and
shedding light on the ripple effects on employment, pricing, and
market dynamics. This economic-oriented perspective contributes
to a more nuanced understanding of the broader implications
beyond agricultural production. In addressing this literature gap,
our study provides a unique and comprehensive perspective on
climate change’s impact on agriculture, explicitly emphasizing the
agricultural value chain from crop production to the final
consumer product. Our study bridges the gap between climate
science, agriculture, and economics by adopting a holistic
approach and analyzing how climate-related disruptions in crop
production could affect the final product and its market dynamics.
Moreover, it underscores the importance of cross-sectoral analysis
in understanding the full extent of climate change impacts,
offering actionable insights for policymakers to address climate-
related risks in agricultural and related value chains.

Moreover, technological advancements, such as precision
agriculture and genetic modification, play a crucial role in
mitigating the adverse effects of climate change on crop yields.
Understanding how these technologies interact with natural
conditions and market forces and how policy interventions shape
their adoption and impact provides valuable insights into building
resilient agricultural systems. Additionally, considering the
dynamic feedback loops between these factors can elucidate the
complex relationships within the agricultural sector and inform
more effective policy responses to climate change challenges. By
delving into these intricate interactions, the study can offer a
richer understanding of the multifaceted nature of climate change
impacts on agriculture and pave the way for innovative solutions
to address them.

This study contributes to the literature by introducing a unique
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framework that integrates climate science, agricultural modeling,
and economic analysis to understand climate change effects on
agriculture comprehensively. Departing from traditional climate-
crop-economic models that often oversimplify agricultural
systems and neglect downstream economic impacts, this
framework offers a holistic perspective on climate change impacts
by analyzing the entire agricultural value chain, including the
ripple effects on pricing, trade, and market dynamics. Its emphasis
on actionable insights for policymakers fills a critical gap in the
literature, highlighting the importance of cross-sectoral analysis in
addressing climate-related risks and fostering resilience in
agricultural systems and related value chains.

The rest of the article is organized as follows. The next section
describes a general climate-crop-economic modeling framework
commonly used in the literature. Section 3 describes how we
incorporate agricultural value chain linkages into a climate-crop-
modeling framework. Section 4 elaborates some applications of
our framework. The final section concludes the study.

2 A general framework of a climate-crop-
economic model

Many previous studies have constructed a climate-crop-economic
modeling framework. Of these, AgMIP’s framework is an
example of the general climate-economic model adopted by
several studies" ™. This framework aims to assess the impact of
climate change on agriculture by combining data from climate,
crop, and economic models (Figure 1). In this approach, the
general circulation models (GCMs) simulate future changes in
climate variables (e.g., temperature and precipitation); the crop
models (Biophysical) analyze the biophysical yield effects, while
the economic models examine the response of key economic
variables.
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Fig.1 AgMIP’s climate impact modeling framework. Reproduced with permission from Ref. [15], © National Academy of Sciences of the United States of

America 2013.

2.1 GCMs

Table 1 summarizes some of the GCMs used in platforms like

AgMIP. These models play a pivotal role in simulating and

Table1 Examples of GCM models used in AgMIP.

understanding the complex interactions between various
components of the Earth system, including the atmosphere, land
surface, ocean, and sea ice. HadGEM2-ES, developed by the UK
Met Office Hadley Centre"?, and IPSL-CM5A-LR, by the Institute

Model HadGEM2-ES IPSL-CM5A-LR

GFDL-ESM2M ISI-MIP

General UK Met Office Hadley Centre

Spatial

Resolution Medium to High

Medium to High

Components Atmosphere, Ocean, Land, Ice Ice
K
€y (17,21, 22]

16, 19, 20
References [ ]

Institute Pierre-Simon Laplace
Information Global Environmental Model 2 Climate Model 5A - Long Range

Atmosphere, Ocean, Land, Sea

Geophysical Fluid Dynamics
Laboratory Earth System Model
version 2M

Inter-Sectoral Impact Model
Intercomparison Project for
Integrated Assessment

Medium to High -
Atmosphere, Lake, Land, Lake Ice -

[23, 24] [2, 18, 25]

"High resolution is typically 1.25 x 0.831>) degrees, and Medium resolution is typically 1.875 degrees in longitude and 1.25 in latitude in the

atmosphere”’.
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Pierre-Simon Laplace in France!”, are GCM:s designed to simulate
interactions among the atmosphere, ocean, land surface, and sea
ice. HadGEM2-ES comprehensively represents the Earth’s climate
system, with variable resolutions for different components. IPSL-
CMB5A-LR operates at a coarser spatial resolution, prioritizing
computational efficiency. Both models have been integral to the
Coupled Model Intercomparison Project (CMIP) and contribute
to climate research, including past climate simulations and future
scenarios. Researchers choose between them based on specific
strengths for their research questions. ISI-MIP, distinct from
climate models, is a project that compares climate impact models
using models like HadGEM2-ES and IPSL-CM5A-LR". ISI-MIP
assesses climate change impacts on sectors such as agriculture,
water, and ecosystems, providing valuable insights for global
assessments and policy decisions.

2.2 Crop models

Three main crop model types are used in climate impact
assessment  studies. Process-based models offer detailed
mechanistic insights, statistical regression models leverage
historical data for empirical predictions, and field-warming
experiments provide real-world validation of model predictions.
The choice of model depends on the research goals, available data,
and the level of detail required for the analysis.

2.2.1 Process-based crop models

Process-based crop models simulate crop growth by integrating
various factors such as climate, soil, agricultural management
practices, and crop-specific parameters (Table 2). The goal is to
understand the mechanistic relationships between these factors
and crop yield. Usually, these models are suitable for small-scale

Table2 Major types of crop models used in climate impact analysis.

mechanistic studies, especially locally, where interactions between
climate, soil, and vegetation are considered. They can enable a
comprehensive examination of the complexities of the agricultural
system™. However, their complex structure requires a large
number of input parameters. The accuracy of each parameter
directly influences the reliability of the output results. These
models may also lack broader applicability beyond the specific
conditions of the modeled site.

2.2.2 Statistical regression models

Statistical regression models, on the other hand, rely on historical
statistical data to establish relationships between crop yield and
climate variables, particularly temperature. Econometric methods
are employed to identify these relationships™. Their key
advantage is the simplicity of their structure, which relies on
historical statistical data and provides a practical and efficient way
to assess the impact of temperature changes. They can also
demonstrate reliability in calculating yield effects caused by
temperature increases under existing conditions. On the negative
side, they may suffer from potential collinearity issues when
multiple climate factors are simultaneously considered, leading to
interference and challenges in isolating the effect of temperature.
They also have limited credibility in predicting future yield
changes based on the current relationship between crop yield and
temperature.

2.2.3 Field-warming experiments

Field-warming experiments involve observing crop growth and
yield under artificially simulated warming conditions in the field,
allowing for a direct examination of the impact of temperature on
crops™. They provide the most direct method for studying the

Process-based crop models

Statistical regression models

Field-warming experiments

Studies

[4, 28, 31]

(32, 33, 34, 35]

[30, 36, 37]

Mechanism

Simulate the crop growth by inputting data
on climate, soil, agricultural management,
crop varieties, etc., as well as by adjusting
crop parameters and improving the
modeling module.

Based on observed crop yields and historical
weather records, econometric methods
identify the relationship between crop yield
and climate. This relationship is then used to
evaluate the impact of climate change on
crop yield.

Observing the growth and development
of crops and changes in final yield
under artificially simulated warming
environments.

Advantage

The local crop model is a small-scale model
based on the conditions of a single
experimental  site,  considering  the
interactions  of  climate—soil-vegetation
factors, which facilitates  small-scale
mechanistic studies.The global gridded crop
model considers the differences in climate,
cultivation, irrigation, and fertilization in
different regions, which is conducive to
research at different scales.

The model structure is relatively simple and
does not need to consider the inherent
mechanism of temperature increase affecting
yield. The regression functions established
based on historical statistical data show
strong reliability in calculating the yield
effect caused by temperature rise under
current conditions.

The most direct method for studying
the impact of temperature rise on crop
yield only requires manual simulation of
future temperature rise conditions at the
field scale.

Disadvantage

The structure of the crop model is complex
and requires the input of a large number of
parameters. The accuracy of each parameter
directly affects the reliability of the final
output results.There is a lack of extensive
warming experiments to verify the impact of

When different climate factors enter the
statistical model simultaneously, collinearity
is prone to occur, leading to interference
from other climate factors in the relationship
between yield and temperature obtained
through statistical regression equations.Due
to the possible changes in the correlation
between crop yield and temperature,

The duration of the warming
experiment conditions is short, and
their representativeness for future long-
term (decades to hundreds of years)
warming periods is insufficient. The
unique characteristics of experimental
crop variety types and other growth

simulating future climate change. predicting future yield changes based on the i:vrlzg:ril;?\:znezzsulto ¢ n e;f:;iz:;;
current relationship between crop yield and P . P
. results at the regional scale.
temperature lacks credibility.
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impact of temperature rise on crop yield, as it involves manual
simulation of future warming conditions at the field scale. They
can provide real-world observations of crop responses to
temperature changes. One of their shortcomings is that short-
duration experiments might not fully capture the long-term
impacts of climate change, as decades to centuries of warming
cannot be replicated. These models may also suffer from limited
representativeness at the regional scale due to specific
experimental conditions, including crop varieties and growth
environments.

2.3 Economic models

The economic models used by programs like AgMIP represent
diverse approaches to modeling environmental and agricultural
systems (Table 3). While they share the overarching goal of
understanding and predicting complex interactions, their focus,
scope, and methodologies differ. Many of these models, such as
Asia-Pacific Integrated Model (AIM), Farm Aquaculture Resource
Management (FARM), Modular Applied GeNeral Equilibrium
Tool (MAGNET), and Common Agricultural Policy Regional
Impact (CAPRI), share a regional emphasis, addressing specific
geographic areas like the Asia-Pacific region or the European
Union. They integrate economic, environmental, and agricultural
components to provide a holistic understanding of the systems
they model. These models often assess the impact of policies,
including agricultural and environmental interventions, on
various outcomes like food production, economic indicators, and
environmental sustainability.

Among these, ENVISAGE is designed to analyze the
relationships between economies and the global environment in
response to human-induced greenhouse gas emissions. It
incorporates a feedback loop linking temperature variations to
economic variables, such as agricultural yields or damages
resulting from rising sea levels. Gobal Change Analysis Model
(GCAM) takes a global perspective, encompassing economic,
energy, land use, and climate components. It is particularly adept

Table3 Economic models used in AgMIP.

at analyzing global challenges like climate change mitigation and
energy demand, offering insights into the interconnectedness of
these factors worldwide. Global Biosphere Management Model
(GLOBIOM), like GCAM, operates at a global level but focuses on
the management of biosphere resources. Its integration of
economic and biophysical elements makes it valuable for assessing
the sustainability of land use in response to varied demands.
International Model for Policy Analysis of Agricultural
Commodities and Trade (IMPACT), another global economic
model, is designed to analyze agricultural commodities and trade.
It provides policymakers with valuable information on the
repercussions of population growth, climate change, and policy
decisions on global food and agriculture systems. MAgPIE,
developed by the Potsdam Institute, is an integrated model
examining agriculture, land use, and the environment globally. It
emphasizes the complex relationships between human activities
and the environment, offering insights into the broader
implications of global change.

Most global modeling frameworks, like AgMIP, are designed to
assess the climate change effects on crop sectors. However, a
notable limitation in this framework lies in its limited capacity to
capture the dynamics of the entire agricultural value chain related
to that crop. For instance, when concentrating solely on wheat
production and subsequent economic models addressing trade
and prices of wheat, these frameworks often neglect crucial
elements like the transfer of climate change impacts from wheat to
bread price and trade. This oversight hinders a holistic analysis, as
the interconnected dynamics of post-harvest processing,
distribution, and market factors are not fully considered, resulting
in an incomplete representation of the economic consequences of
climate change on the agricultural value chain. This holistic
approach is essential for facilitating the development of targeted
adaptation and resilience strategies, including adopting climate-
resilient crop varieties and improving post-harvest technologies.
Understanding market dynamics within the value chain context is
crucial for making informed decisions about economic policies
and interventions in response to climate impacts.

Model Developer Economy coverage Agricultural sectors Region Base year
General Equilibrium
AIM NIES, Japan Full economy 8/1 Asia-Pacific, 17 2005
ENVISAGE FAO/World Bank Full economy 10/5 Global, 140 2011
FARM USDA, United States Full economy 12/8 USA, 5 2004 and 2009
MAGNET LEI-WUR, The Netherlands Full economy 10/9 Global, 29/16 2004 and 2007
Partial Equilibrium
CAPRI JRC, Belgium Agriculture 50 EU, 250 1995-2017
GCAM PNNL, United States Agriculture, energy 18/0 Global, 32 2005
GLOBIOM ITASA, Austria Agriculture, forestry, bioenergy 31/6 Global, 30 2000
IMPACT IFPRI, United States Agriculture 32/14 Global, 159 2005
MAgPIE PIK, Germany Agriculture 21/0 Global, 10 1995

3 An improved model for climate impacts on
agriculture value chain

An improved framework can be used to analyze the climate
change effects on crop output and the broader agricultural value

9400005 (4 of 11)

chain. Such a framework integrates GCMs, crop models, and
global economic models. GCMs simulate future climate changes,
while crop models replicate shifts in global yield. Economic
models capture consumption and prices, considering shocks to
crop yield and the downstream value chain of the crop. To

Energy and Climate Management | 2025, 1(2): 9400005
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evaluate global crop yield variations due to climate change,
simulations compare results with past averages, utilizing
rigorously tested crop models. These yield changes from the crop
model then inform economic model simulations, exploring
variations in production and market repercussions throughout the
agricultural value chain. This assessment can be conducted using
comparative static or dynamic approaches, with the former
projecting impacts on existing economic conditions. The current
study introduces this comprehensive framework, evaluating the
climate change impact on crop yields and their consequences on
this crop’s value chain (Figure 2). This approach ensures coverage
of climate impacts on the entire agricultural value chain rather
than concentrating solely on the affected crop.

To introduce the agricultural value chain impacts of climate

Emission Initial Climate Soil
scenario field data conditions
Crop
Simulation model
Climate change
tmp, pre,...
(tmp, pre,...) .
Crop data Management
Crop | Crop
[phenophase[ " [~ planting
region !
Climate change Simulation
Climatic conditions Distrib_utions of
yield

S -/

change, we consider the impact of climate change on the supply
and price of the product of the affected crop (crop product),
considering both the direct effects on a crop’s production (an
ingredient of the product) and the downstream consequences on
crop product industry. This approach of examining the entire
value chain, from crop production to the final consumer product,
provides a more comprehensive understanding of the economic
implications of climate change. Some advantages of such a holistic
approach may include: By considering the agricultural value
chain, the study captures the interconnections and dependencies
within the value chain. Climate impacts on crops can have
cascading effects on various production, processing, and
distribution stages, ultimately influencing the final product’s
availability and price.
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Fig.2 Modeling framework for climate impacts on the agricultural value chain. Clim. shock means Climate shock.

Analyzing the agricultural value chain allows for a more
accurate assessment of the economic ripple effects of climate
change. This includes not only the direct impacts on crop yields
but also how those impacts propagate through related sectors,
potentially affecting employment, investment, and overall
economic stability. The study on crop products as consumer
products with a well-defined value chain resonates more with
people and policymakers. It makes the future climate change
effects on everyday items tangible and relatable, enhancing the
study’s real-world relevance and communication of its findings.
Climate change impacts are often cross-sectoral, affecting multiple
industries simultaneously. Studying the agricultural value chain
acknowledges this complexity and can reveal indirect effects that
might be overlooked in studies concentrating solely on the
affected crop.

3.1 From climate to crop and crop to economic linkages

In this framework, we start by using different GCMs in

Energy and Climate Management | 2025, 1(2): 9400005

conjunction with crop models to translate climate change impacts
to crop production. According to the temporal dimension of
climate change impacts, we then simulate global crop yield
changes due to climate change compared with the average yield
during the past period, usually on the grid level, using the crop
model. The simulation from the crop model usually requires a
considerable amount of data, covering management information,
soil parameters, daily weather data, and crop calendar data. The
study additionally incorporates data on historical fertilizer use to
establish baseline fertilizer application rates.

In our framework, first, crop yields (national/global) from the
past periods (30-40 years) will be modeled. Crop yield simulation
should also consider possible production systems (for example,
early, mid, and late rice) and water management scenarios
(usually fully irrigated and rain-fed). Second, accounting for
inherent differences in crop varieties might require data on their
genetic makeup for the initial parameters, which can be obtained
from existing studies. Third, the crop yields will be simulated

9400005 (5 of 11)
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across the study area. Fourth, global and national yields will be
determined by summing data from individual locations at the grid
level. Lastly, the framework will help estimate changes in region-
specific yields by comparing them to the historical average yield
for the corresponding area or the entire globe.

Fertilizer application and other management practices (e.g.,
irrigation) vary for each crop and crop model. For the case study,
the CSM-CERES-Barley model used crop calendar data from
various sources that offer planting and harvesting timelines for
various crops at different resolutions. Global datasets detailing
nitrogen (and other) fertilizer application rates per grid cell are
also used. Management information also requires irrigation and
other management practices that suit various family-size practices.
This information can be sourced from various sources'™**! and
used in the crop model for each crop.

3.2 Agriculture value chain linkage

3.2.1 Crop yield shocks

Next, we will use a specific economic model to simulate crop yield
variations resulting from climate change on the crop market and
its value chain. There are two main types of economic models,
general and partial equilibrium, that employ comparative static or
dynamic approaches. General equilibrium models analyze the
interdependence of various economic factors across multiple
markets, considering simultaneous changes in supply and
demand. In contrast, partial equilibrium models focus on the
isolated analysis of a specific market, assuming all other markets
remain unaffected by changes within that particular sector.
Comparative static approaches in economics analyze the changes
in equilibrium outcomes resulting from shifts in exogenous
variables. In contrast, dynamic approaches focus on studying the
evolution of economic systems over time, incorporating
considerations of transitions and adjustments in response to
endogenous forces. An approach employing a comparative static
method can project the climate change impact on the agricultural
value chain, ie., prices and supply of crop products within existing
economic conditions. In this approach, one can reduce
uncertainties and assumptions related to the model that is run
under economic scenarios of the future.

In this framework, the impact of crop yield changes, estimated
by the crop model, will be integrated into the economic model by
shocking land-use efficiency (“afe” in Eq. (1)) for affected
cropland in each region. This is a common approach used to
transfer crop yield variations into economic consequences. Egs.
(2) and (3) indicate that changes in the efficiency of land use will
consequently change land demand and price. In the economic
model, the sectoral/regional price of the primary factors is
estimated in Eq. 1 as (equations show percentage changes):

n

pva, =Y (SVA;, x (pfe,, — afe ;,)) (1)
k=1

here, j indicates production commodity (industry) in region r
using endowment commodities k. The firm’s price of value-added
is pva and price for endowment commodity k is pfe. The share of
each endowment commodity (k) in total value added is SVA.
Region/sector specific change in primary factor augmenting

technology is afe.
Another option would be to incorporate the climate impacts as
shocks to total factor productivity (TFP) in a CGE model, as
demonstrated by Zhai et al.”. In this approach, estimated changes
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in crop vyields due to climate change are translated into a TFP
shock within the agricultural sector of the CGE model. This shock
captures the overall efficiency with which inputs are transformed
into crop outputs, considering the biophysical effects of climate
change.

3.2.2  Input substitutions

For our improved framework, we surveyed the existing literature
on how land and other important inputs (like capital or labor) are
substituted under climate change, noticing two main pathways. In
the gradual climate change impact assessment, the farmers usually
have enough time to respond and adapt to the changing climate.
They can adapt by changing their management practices, like
using more irrigation to cope with water shortage or to substitute
one input with another. In the second pathway, which relates to
sudden climate events like drought or extreme heat, farmers find
it hard to replace land with other major inputs. To reflect this
difficulty, the elasticity of substitution between land and other
inputs can be lowered. As an illustration, the model allows us to
adjust the responsiveness of crop production to input price
changes (elasticity of substitution) under climate change scenarios.
We use a 1/10 of the base value of this elasticity (ESUBVA, Eq.
(2)), which is based on previous studies™ *. As the value of this
critical parameter may also have some inherent uncertainty, we
should further analyze the sensitivity of the key parameters in the
economic model.

In the economic model, the regional/sectoral input of each
endowment commodity is governed by Eq. (2):

qfe,;,=—afe ;,+qva, —ESUBVA,x (pfekjjf afe,;,— pvajyr> (2)

here, qfe stands for the demand of an endowment commodity k,
qva shows the value added to each sector of each region, and the
elasticity of substitution among capital, labor, and land in an
industry j is denoted by ESUBVA.

Usually, labor and capital factors are mobile among different
production sectors in a CGE model setting. However, land and
natural resources cannot move that easily (Eqgs. (3) and (4)). In the
original settings, a crop can change its land demand within a small
range, which is set through ETRAE = —1 (ie., transformation
elasticity). However, in contrast to the long-run climate impacts,
under extreme climate conditions (e.g., droughts), in response to
food security concerns, individuals or regions might prioritize
planting more staple food crops that are crucial for their diets.
This could lead to an increase in the area dedicated to crops like
wheat, potentially at the expense of other cereals such as rice or
maize. Consequently, the planted area for these secondary crops
might decrease.

Our modeling framework takes a more realistic approach by
assuming that total land availability remains constant in the short
term during climate events. This means farmers would not be able
to simply expand the land dedicated to a specific crop (the affected
crop) if faced with climate challenges. Instead, the model
considers the possibility of adapting other inputs like labor
(through increased work hours) or machinery (through additional
investment) to maintain production of the affected crop. In our
improved model framework, we assume the amount of land used
for the affected crop (or any other crop) remains the same during
normal and climate-affected years (achieved by setting
ETRAE = 0), even though adjustments might be made to other
resources.

Sluggish endowments are allocated across sectors via Eq. (3):

Energy and Climate Management | 2025, 1(2): 9400005
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qoes,, = qo,, +ETRAE; x (pmk,r - Pmesk,j,r> (3)

kjr
where qoes denotes sluggish endowment supply to sector j in
region r and qo stands for the output of endowment k in region r.
Sluggish endowments’ elasticity of transformation is ETRAE, the
market price of endowments is denoted by pm, while the market
price of the sluggish endowments is shown by pmes.

Eq. (4) determines sluggish endowments’ composite price as

pm,, =Y (REVSHR,,, x pmes, , ) (4)
j=1
In this equation, REVSHR indicates the endowment’s share used
by each industry j in region r.

Meanwhile, mobile endowments (labor and capital) can act
normally (move freely) as sudden climate events can encourage
more investment to expand these endowments (Egs. (5)-(6)).

Mobile endowments are allocated to different sectors as in
Eq. (5):

n

qo,, = ) (SHREM,,, x gfe, ;) (5)
j=1
This shows that mobile endowment’s share at market prices =
SHREM.
Mobile endowments’ composite price is governed as

pm,, = VFM,, / qfe b (6)

meaning that producer expenditure to purchase endowments at
market prices = VFM.

3.2.3 Crop allocation to competing uses

Changes in the affected crop supply due to climate change have
diverse effects on downstream industries’ production across
regions. The crop allocation among various uses will vary due to
the elasticity of demand and price in each region as various
industries operate under profit maximization conditions. Various
downstream users of the crop may consume different shares of
the affected crop, and climate change impacts these allocations
differentially. As shown in Figure 2, the share of the affected crop
to Usel may contract more/less during climate change than other
uses. For example, if wheat supply (the affected crop) is affected by
climate change, its allocation to pasta production (Usel) may drop
by a higher/lower margin than for bread (Use2), crackers (Use3),
or other uses in a given region.

The varying allocation of a climate-affected crop to
downstream uses brings forth a complex set of implications.
Industries reliant on the affected crop must assess and fortify their
supply chains to adapt to changing climate conditions and
mitigate potential disruptions in production. Shifting allocations
may lead to global trade imbalances, impacting importers and
exporters of the downstream products of climate-affected crops.
Industries facing altered allocations can find opportunities for
innovation, such as developing climate-resilient crop varieties and
exploring alternative inputs. Changes in downstream products
may influence consumer behavior, leading to shifts in preferences
and purchasing patterns. The impacts extend beyond agriculture,
emphasizing the interconnectedness of industries in the face of
climate-induced challenges.

Here, the allocation of wheat to pasta, bread, and crackers
production will depend on region-specific prices and demand
elasticities as production sectors operate under the profit
maximization principle. For example, if pasta demand is less
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elastic in one region, its demand for wheat will drop relatively by a
lower margin compared to bread or crackers under climate
change.

4 Applications of the framework

4.1 Climate-barley-beer application

Several studies have used our introduced framework for climate
impact assessment (Table 4). For example, Xie et al.* applied this
framework to analyze climate change impacts on barley (the
affected crop) and beer consumption (barley’s primary
downstream use). They adopted this employed framework by
using different GCMs (GFDL-ESM2M, HadGEM2-ES, IPSL-
CM5A-LR, MIROC-ESM-CHEM, and NorESM1-M) and the
crop model Decision Support System forAgrotechnology Transfer
(DSSAT) to translate climate change impacts into crop production
(barley). Changes in barley yield were simulated at a global scale
using gridded (0.5° x 0.5°) extreme events through CSM-CERES-
Barley within DSSAT. The model was run using gridded
formatted inputs, including management information, soil
parameters, daily weather data, and crop calendar data. Soil
parameters, weather data, and crop calendar data were obtained
from various sources, and a crop-specific gridded dataset for
nitrogen fertilizer application was used. Barley yields worldwide
from 1981-2010 were modeled, considering two production
systems for barley (i.e., winter and spring) and rain-fed and fully
irrigated water management systems. Changes in regional and
global yields were calculated as deviations from the average for
1981-2010. In the agriculture value chain linkage, CSM-CERES-
Barley simulated the gridded variations in global barley yield
under climate change (from extreme events) in contrast to the
past yields (average of 1981-2010). They also considered other
related elements of our framework, like input substitutions for
barely production and barley allocation to competing uses such as
beer, livestock feed, and other uses.

For the final part of the agricultural value chain impact analysis,
they found that in most instances, food commodities, particularly
animals fed on barley, take precedence over luxury items like beer
during climate-related crises (Figure 3(a)). For example, the most
intense climatic conditions (i.e., occurring in RCP8.5) will reduce
global barley production significantly (15%), and the share
allocated to beer would be reduced by a more substantial value of
20%. Different regions would also react differently to barley
shortages. For example, the USA’s barley consumption will drop
by 5% due to climate change (ie, RCP8.5), with the share of
barley for beer production dropping by 10% and exports
increasing by 262%. Consequently, future climate change not only
diminishes the overall barley availability for key nations but also
curtails the proportion allocated to beer production. For example,
both the USA and China will face the highest drop in total beer
consumption (Figures 3(b) and 3(c)) because they face a
disproportionate drop in the supply of barely for beer production.

Other crops like maize or wheat are also viable case study crops.
This analysis focused on barley because it is the primary
agricultural ingredient in beer production, which stands as the
most widely consumed alcoholic beverage worldwide.

In this case study, model validations were performed by testing
different factors to see how they affect the global beer market
under climate change. By changing each factor by a small amount,
how it affected the volume of beer people consume worldwide was
observed. It was found that the efficiency of turning barley into
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Table4 Applications of the framework.

Sr. # Authors Title Publication Year Geographic
coverage
1 Xie et al. [44] Role of market agents in mitigating the climate change effects Natural Hazards 2019 Not specified
on food economy
Impacts of climate change on self-sufficiency of rice in Journal of Cleaner
2 Zhang et al. [45] China: A CGE model-based evidence with alternative . 2019 China
. . Production
regional feedback mechanisms
Assessment of the economic cascading effect on future Journal of Cleaner
3 Huang et al. [46] climate change in China: Evidence from agricultural direct . 2020 China
d Production
amage
Assessing sustainability of soybean supply in China: Journal of Cleaner .
4 Wuetal. [47] Evidence from provincial production and trade data Production 2020 China
5 Ignjacevic et al. [48]  Time of emergence of economic impacts of climate change Envzronrzzi::etzstesearch 2021 Global
Modeling the inter-regional economic consequences of Journal of Cleaner .
6 Wang etal. [49] sequential typhoon disasters in China Production 2021 China
7 Wang et al. [50] Econqmlc impacts of Fllmatg—lnducgd ¢rop yield chgnges: Climatic Change 2021 Six countries
evidence from agri-food industries in six countries
3 Alietal. [51] The Impact of Climate Change on China and Brazil’s Land 2022 China and Brazil
Soybean Trade
The uncertainty of climate change impacts on China’s s .
9 Cui et al. [52] agricultural economy based on an integrated assessment M1tlga€1on and adaptation 2022 China
strategies for global change
approach
Impact of Extreme Weather Disasters on China’s Barley
10 Liu, J. and Li, X. [53] Industry under the Background of Trade Friction—Based on Foods 2022 China
the Partial Equilibrium Model
1 Wei et al. [54] Dual carbon gqals aqd the impact on tju.tur.e agrlcultu.ral China Agfzcultyml 2002 China
development in China: a general equilibrium analysis Economic Review
b Qiao et al. [55] How chmafte change and mternatlona.l trade will shape the Journal of Qleaner 2023 Global
uture global soybean security pattern Production
a b
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Fig.3 (a) Shares of barley uses under RCP8.5 and RCP2.6, changes in beer consumption in major countries under (b) RCP8.5 and (c) RCP2.6 due to varying
barely consumption by different uses under climate change.

beer had the biggest impact, followed by factors like the severity of
climate change and how much barley is stored in each country.
These model validations can also be extended to future studies.
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Our approach used in the above case study offers a significant
advancement over traditional climate impact assessments by
considering the entire agricultural value chain rather than
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concentrating solely on primary crops. By examining downstream
uses such as beer production and the allocation of crops to
competing uses, this approach provides a more comprehensive
understanding of how climate-related disruptions in crop
production ripple through the economy and how competing uses
of crops compete with each other in times of crop damage. This
enables policymakers to make more informed decisions regarding
food security, economic stability, and adaptation strategies in the
face of climate change.

4.2 Other studies using this framework

Most other studies in Table 4 investigate the intricate relationship
between climate change, agricultural sustainability, and economic
impacts, predominantly centered around China and global trade.
Common themes across these studies include using sophisticated
modeling approaches to simulate future scenarios, highlighting
the necessity for sustainable agricultural practices. A significant
emphasis is placed on the vulnerability of key crops, such as
soybeans and rice, to climate change, with an overarching
recognition of the role of technological progress in mitigating
adverse effects arising from decarbonization efforts on agriculture.

Several studies employ computable general equilibrium models,
such as CHINAGEM, Global Trade Analysis Project (GTAP), and
Adaptive Regional Input-Output (ARIO), to assess the economic
consequences of climate-induced changes in crop yields at various
scales. The methodologies include emergy accounting approaches
to evaluate sustainability, ensemble modeling coupled with global
economic models to assess variations in soybean yields, and
probabilistic climate change projections combined with impact
functions for identifying the Time of Emergence of Economic
Impacts (ToEI).

While some studies analyze the global economic impacts of
climate-induced changes in crop yields, others specifically focus
on China’s self-sufficiency in key crops. The research underscores
the importance of understanding the economic repercussions of
extreme weather events and trade conflicts on agricultural imports
and exports, particularly in the context of China’s dependence on
soybean imports. The role of international trade policies and
market integration emerges as a crucial factor in adapting to
climate change and ensuring food security.

Differences among the studies lie in their specific focuses,
methodologies, and outcomes. Some concentrate on assessing
economic cascading effects due to industrial linkages, while others
explore the spatial distribution of soybean security or introduce
novel concepts like the Time of Emergence of Economic Impacts
(ToEI). Additionally, there are variations in the crops studied, the
economic models employed, and the geographic scope, ranging
from global assessments to regional analyses.

5 Conclusions

Climate change, crop dynamics, and economic factors pose
unprecedented challenges to global food security. While climate-
crop models are valuable, they oversimplify real-world systems
and neglect socioeconomic factors. Integrative frameworks are
crucial for understanding climate impacts but often overlook
downstream industry effects.

The comprehensive climate-crop-value chain framework
introduced in this study provides a holistic perspective by
considering the agricultural value chain. This approach, bridging
climate science, agriculture, and agricultural value chains, can
offer insights into the broader implications of climate change,
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resonating with a wider audience. By studying the agricultural
value chain, the framework captures the interconnectedness and
ripple effects of climate impacts beyond the affected crop.

In navigating the intricate landscape of climate-crop-economic
modeling, this study contributes to the ongoing dialogue
surrounding improved analytical approaches for attaining
sustainable agricultural development. Addressing the gaps
identified in existing studies, particularly in understanding the
economic consequences on the agricultural value chain, is crucial
for a more comprehensive and actionable approach to climate
resilience in agriculture. Policymakers must address the
differential impacts of climate change on crop allocations,
requiring nuanced policies and adaptive strategies for affected
industries. Prioritizing research and development is crucial to
invest in technologies and practices that enhance the resilience of
downstream industries.

This framework has a few limitations. First, it uses just one crop
model to predict crop yields, which might not fully account for
how climate change affects crop damage. Also, the predictions are
based on a static economic approach, indicating current farming
methods and global economics and demographic conditions. It
does not consider future changes in farming, like new technology
or improved crop varieties. Future studies could explore these
factors to understand better how climate change affects
downstream industries through crop damage.
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