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A B S T R A C T

Water is unevenly distributed across regions, yet the effectiveness of long-distance water transfer in addressing
this issue remains understudied. This paper employs a difference-in-difference design to examine the impact of
the world’s largest water transfer project on water resources, rural development, and urban growth. We find
that the project enhances water supply and agricultural production in water-receiving areas, while it leads to
agricultural declines in water-sourcing areas. Such diverging patterns contribute to various consequences on
labor market and rural welfare, thereby generating further differential impacts on nearby urban growth. The
water-receiving areas witness urban expansion and economic activities thrive in the rural-urban fringe, but
in the water-sourcing areas, economic activities decline outside the core urban areas. Further analysis reveals
significant heterogeneity between the two water-transfer routes, distinguished by their engineering designs.
1. Introduction

Water is essential for life and civilization. Access to water has been
a key defining factor in the location and prosperity of cities. Rivers like
the Nile, Euphrates, Tigris and Yangtze enabled agricultural activities
and thrived the development of the most recognized civilizations. And
today, modern cities like London, New York and Shanghai continue
this tradition, flourishing along waterways. However, the distribution
of water resources exhibits significant disparities both across and within
countries, and this uneven distribution is likely to become exacerbated
as the changing climate is redistributing water resources (Mekonnen
and Hoekstra, 2016; Scanlon et al., 2023). It remains unclear how
changes of water resources reshape local economy and urban growth.

Throughout human history, endless efforts have been made to dis-
cipline and relocate water resources through drilling wells, digging
channels, and building dams, etc. However, projects enabling water
transfer over long distances are still rare given the technical chal-
lenges and resource constraints typically involved. Long-distance water
transfer initiatives have been proposed and implemented by several
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countries, such as the California State Water Project in the United
States, the National River Linking Project in India, and the South-to-
North Water Transfer Project (SNWT) in China. However, these projects
have sparked considerable controversy. While proponents highlight the
potential benefits of redirecting water from surplus to deficit regions,
rigorous empirical evaluations are still needed to quantify the economic
returns and welfare distributions.

This study examines the effects of the long-distance water transfer
project on water resources, rural development, and urban growth using
the SNWT project in China as an example. As the world’s largest
water-transfer project, the SNWT project was initiated by the Chinese
government to balance the huge disparity in water resources between
its southern and northern regions. The first phase of the project in-
volved building two separate cross-provincial water-transfer routes:
the middle line and the east line. The two lines were designed under
distinct engineering approaches, with their trunk line lengths totaling
nearly 3,000 kilometers. The middle line and the east line started to
function in 2015 and 2014 respectively, providing us a unique chance
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to study the effect of long-distance water transfer.
Our data combine remote sensing images and a wide range of

conomic outcomes in several nationally representative panel datasets
t the levels of counties, villages, and households. Geographical in-
ormation related to the SNWT project, after digitization, is spatially
rojected to these data layers. An empirical challenge arises from
otential correlations between project locations and various economic
onditions. Leveraging the least-cost considerations in designing the

project routes and the inconsequential unit approach, our baseline
model adopts a difference-in-difference (DID) design that compares the
geographically determined affected regions with their nearby regions
before and after the project’s completion. We validate the parallel trend
assumption in an event study framework and further provide a battery
of tests such as using alternative DID estimators, a richer set of fixed
effects, and various tailored control groups.

Our results reveal that the project brings a wide range of economic
impacts. In the water demand areas, the project increases water cover-
age by 6.5% and boosts local GDP per capita by 6.0%. The economic
impact is primarily driven by agriculture, instead of other sectors.
Rural households directly benefit from the project as their agricultural
income and consumption increase. The project water intensifies local
agriculture and holds back extra incentives for rural labor to leave
agriculture. Consistently, we find no evidence that the project increases
rural non-agricultural returns, nor do we find the project induces labor
relocation from farm to non-farm sectors.

The project-led growth in agriculture has profound implications on
earby cities. Using land-cover data, we find urban boundaries expand
nd city sizes grow by 6.9% in the water demand areas. We also track
hanges in night lights and population densities in the always-urban,
lways-rural, and rural–urban fringe areas, respectively. In the always-
rban areas, the project leads to a 4.2% increase in night lights and
 3.1% increase in population densities. The rural–urban fringe has
xperienced even larger growth as these effects amount to 6.1% and
.9%, respectively. In contrast, we do not find significant changes in
he always-rural areas. Taken together the results on rural consumption
nd labor, the project-induced urban growth is most likely driven by the
emand effects of rural residents.

A different picture emerges in the water supply areas. The project
eads to a 5.6% decrease in agricultural GDP per capita, but this
ecession is offset by a 5.4% increase in non-agricultural GDP per
apita. This structural transformation is also reflected in rural house-
old income and labor allocation. Specifically, the project decreases
ural farm income by 7.8% but increases non-farm income by 9.3%.
ousehold consumption exhibits no discernible change. We also ob-

serve increases in non-farm employment and migration. These changes
in rural villages reverberate in nearby cities. While urban areas become
more vibrant, their physical boundaries remain largely unchanged.
In the always-urban regions, the project increases night lights and
opulation densities by 2.8% and 2.2%, respectively, while other re-

gions experience economic declines. The findings are consistent with
decreased agricultural returns, increased out-migration and stagnant
rural consumption. They also align with the fact that water supply
reas, which are rich in water bodies, face restrictive geography that
imits urban expansion despite population growth (Saiz, 2010).

Finally, we explore potential heterogeneities across the two lines,
motivated by their substantially different engineering designs. In the
water demand areas, the project’s effects are largely homogeneous,
since the essential benefits of receiving more water do not differ in
ature. However, in the water supply areas, the project effects are

mostly driven by the middle line. This discrepancy stems from the
fact that the sourcing region of the middle line involves heightening
 dam and expanding its reservoir, imposing a much greater burden
n its local agriculture compared to the east line. Our findings shed
ight on the fundamental disparities between dam-based and transfer
etwork-based water relocation schemes. Both mechanisms provide
imilar benefits to the water-receiving areas, yet they differ in the costs
2 
they impose on the supply areas.
Existing studies have searched for what infrastructures deliver the

argest benefits (Glaeser and Henderson, 2017). While numerous stud-
es concentrate on transportation infrastructure (Banerjee et al., 2020;

Baum-Snow, 2007; Baum-Snow et al., 2020; Behrens, 2007; Donaldson
and Hornbeck, 2016; Dong et al., 2020; Lin, 2017), we underscore wa-
ter infrastructure in light of anticipated climate change-induced shifts
in water resource distribution across regions. Previous studies on water
infrastructures have examined dams and canals that divert surface
water, pumping facilities that exploit groundwater, and hydroelectric
infrastructures that provide electrification (Duflo and Pande, 2007;
Strobl and Strobl, 2011; Blakeslee et al., 2023; Rafey, 2023; Hornbeck
and Keskin, 2014; Blakeslee et al., 2020; Dyer and Shapiro, 2022;
Lipscomb et al., 2013; Severnini, 2023). Our paper differs by analyzing
a distinctive long-distance water transfer project in China, in which
he transferred water greatly surpasses the capacity of regular water
nfrastructures. Moreover, we are able to contrast the dam-based versus
ransfer network-based water relocation schemes, which sheds light on
esigning long-distance water transfer projects in other countries with
imilar hydrological environments.

This paper adds to the economics of environmental adaptation
(Kelly et al., 2005; Hornbeck, 2012; Burke and Emerick, 2016, etc.).
Our analyses reveal that the adaptation strategies involve two funda-
mental and complementary processes. First, variable inputs are simul-
aneously adjusted upon receiving the project water, consistent with
revious studies documenting farmers’ flexibility in making productive
djustments toward environmental change (Cui, 2020; Jagnani et al.,

2021; Aragón et al., 2021; Cui and Zhong, 2024; Cui and Tang, 2024).
econd, rural labor shifts from farm to non-farm sectors, constituting

an important adjustment to attenuate agricultural loss associated with
environmental shocks (Blakeslee et al., 2020; Colmer, 2021; Liu et al.,
2023). The second process is also observed in the push-pull literature,
featuring climate shock in agriculture as a push factor (Barrios et al.,
2006; Henderson et al., 2017; Jedwab et al., 2017).

This paper also contributes to the broader literature on struc-
ural transformation. Developing countries have a large share of labor
n agriculture, but agriculture’s contribution in total value added is
ow (Restuccia et al., 2008). Yet, there is limited evidence on how

changes in agriculture affect non-agricultural development and the
indings are mixed (Foster and Rosenzweig, 2004; Adhvaryu et al.,

2013; Blakeslee et al., 2023; Bustos et al., 2016; Hornbeck and Keskin,
2015; Emerick, 2018). We further enrich the literature by showing dif-
ferent pictures in water demand and supply areas. The project enhances
water supply and agricultural production in water-receiving areas,
while it induces agricultural declines in water-sourcing areas. Such
diverging patterns are associated with various labor outcomes, rural
welfare and urban growth. The mechanisms at play are consistent with
existing studies about the demand effect on local non-tradables and the
migration channel (Emerick, 2018; Bustos et al., 2016; Hornbeck and
Keskin, 2015).

This paper is organized as follows. Section 2 introduces the back-
round of the SNWT project. Sections 3 and 4 describe the data and

empirical strategies. Sections 5 and 6 present the empirical findings on
ater coverage, economic growth, rural development, labor relocation,
nd urban growth in the water demand and supply areas, respectively.
ections Section 7 discusses the heterogeneity between the middle and

east lines. Section 8 concludes.

2. Background

Water resources per capita in China amount to approximately one-
fourth of the global average, with a significantly imbalanced distribu-
ion nationwide. The northern region, home to half of the domestic
population and roughly 60% of the arable land, receives less than
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Fig. 1. Water Demand and Supply Areas of the SNWT Project
otes: This figure shows the spatial map of the SNWT project. Panel A shows the project maps, in which the middle line is in red and the east line is in brown. The diagonal

shades represent water demand areas and the gridded shades represent water supply areas. Panels B and C focus on the water demand and supply areas, respectively. The treated
counties are in red, and the control counties are in blue. All panels in the figure are adapted from the official document of the project.
a

20% of the domestic water resources on average.1 In the early 1950s,
Chairman Mao first brought up the idea of transferring water from the
south to the north, after he personally witnessed the residential water
shortage in Beijing. However, due to technical, financial, and resource
constraints, a feasible plan for the project was not proposed until the
turn of the century.

The Chinese government officially approved the construction plan
for the SNWT project in December 2002. The project’s first phase
involved establishing two separate water transfer routes, namely the
middle line and the east line (the left and right lines in panel A of
Fig. 1). The project was designed to reach the Beijing–Tianjin–Hebei
(BTH) region where the urban population is large but the water is
scarce. Both of the trunk lines stretch almost 1,500 kilometers and
rossing multiple provinces.

This unprecedented project was planned, implemented, and fi-
nanced almost entirely by the central government. Its primary objec-
tive, as stated in official documents, was to address water scarcity in

1 More background about water shortage in China is documented in China
Water Resources Bulletin, 2019, published by the Ministry of Water Resources
n China.
 R

3 
the BTH region and other water-deficit regions along the routes. The
routes were designed after decades of evaluations and the final decision
was mostly based on least-cost considerations with the objective of
transferring sufficient water to the north, especially to the BTH region.

All the places along the transferring routes benefit from receiving
extra water. The official documents of the project clearly delineate the
dministrative units that are slated to receive transferred water from

each of the two lines. This information is summarized and presented in
Table A1. Despite certain areas being geographically proximate to both
lines, the documents specify that they solely receive water from one of
the two lines.

The project’s middle and east lines have distinct engineering de-
signs. The middle line sources water from an existing reservoir, Dan-
jiangkou, located on the Han River, a major tributary of the Yangtze
River. The construction involves heightening the dam and expanding
the reservoir, and most of the route comprises newly established open
channels. The route is designed to gradually decrease in elevation from
south to north, facilitating gravity-driven water transfers over the long
distance. Regions along this route benefit from receiving the water
through newly established channels and pipe culverts.

The east line sources water from the downstream of the Yangtze
iver. Unlike the middle line, which transfers water through open



X. Cui et al.

a

t

o
t

r
w
f
a
c
d
o
f
s
w
o
a

c
t

a
d

l

v
l
m
t

o
p

t
g
t

w

d
r

C

2
i
w
c
W
1
d

Journal of Urban Economics 146 (2025) 103736 
channels and pipe culverts, the east line transfers water by connecting
existing rivers and lakes along its way. This approach utilizes the water
capacities of available water bodies, but the natural terrain precludes
the design of gravity-driven water transfers. As a result, more than 20
pump stations have been established along the route to elevate water
t certain locations.

The construction cost of the middle line is significantly higher than
hat of the east line. On the one hand, reforming the Danjiangkou reser-

voir and its dam is very costly, incurring significant expenses regarding
both the construction and related compensation payments to nearby
residents.2 On the other hand, the middle line necessitates the creation
of entirely new infrastructure, including open channels and pipe cul-
verts spanning the 1500-kilometer route. Unlike the east line, which
leverages existing water bodies, the middle line requires substantial
investment to build these channels and culverts from scratch.

3. Data

We compile data from various sources, including digitized maps of
the SNWT project, administrative statistics, rural household surveys,
remote sensing measures, and climatological datasets.3

Official maps of the SNWT project. We obtain digitized maps
f the SNWT project from the National Geospatial Information Cen-
er. Panel A in Fig. 1 shows the two water transfer lines, including

trunk lines and major branches. Water receiving areas are indicated
in diagonal shades and water supply areas are in gridded shades. The
middle line is in green color and the east line is in brown. We collect
detailed information on the engineering design, construction plans, and
operation timing from the official publication of the South-to-North
Water Transfer Project Construction Yearbook. The middle line started
its operation in 2015, and the east line started one year earlier.

Water coverage. Surface water coverage serves as a proxy for water
esources owing to a lack of detailed administrative data on actual
ater delivery and redistribution. Data on surface water coverage are

rom the Joint Research Centre in the European Commission. The data
im to support applications including water resource management,
limate modeling, biodiversity conservation and food security. The
ataset is derived from Landsat imagery, which provides information
n whether water is detected in each 30m×30 m grid cell at a monthly
requency since 1984. We use the data waves from 2010 to 2018 to
tudy the SNWT project’s impacts. Specifically, we construct the annual
ater coverage at the county level by dividing the number of water-
ccupied grid cells by the total number of grid cells in each county and
veraging across the months in a year.
County-level statistics. We obtain a set of administrative records

at the county level from the China Statistical Yearbook (County Level).
The yearbook is published annually by the National Bureau of Statis-
tics, containing a set of complete records including GDP per capita
and its breakdown into agricultural and non-agricultural sectors. We
supplement additional county-level data by digitizing county-level in-
dices reported in various provincial statistical yearbooks. The compiled
county-level data allow us to further examine year-to-year variation
in cultivated cropland, irrigation, specific inputs such as fertilizer and
machinery use.

Rural household survey. We supplement the county-level analysis
with a large-scale rural household survey, administered by the Research
Center of Rural Economy at the Chinese Ministry of Agriculture. The
survey begins in 1986 and covers more than 20,000 households in 399

2 The expansion of the Danjiangkou reservoir resulted in the flooding of
ertain areas that were previously inhabited. To address this displacement,
he government initiated the construction of new housing complexes in alter-

native locations. Additionally, the affected residents received compensation to
facilitate their relocation.

3 See the replication files from Cui et al. (2025) for more details.
4 
villages from 32 provinces. The villages are selected for representa-
tiveness based on region, income, cropping pattern, and population;
dditionally, within each village, a random sample of households was
rawn. The data have been widely used in economic research (e.g.,

Benjamin et al., 2005; Chari et al., 2021).
We use annual data during 2010–2017, which report household-

evel information on production, consumption, and assets as well
as village-level information on labor and migration. Specifically, the
illage-level records track labor composition, distinguishing between
ocal and non-local employments in non-farm sectors. Information on
igration distances is also recorded, ranging from within the local

ownship to destinations outside the province.4 The village and house-
hold samples in our analysis are minimally affected by the project-led
displacement in the water supply areas, as we maintain continuous
bservations on these villages and households throughout the sample
eriod.
Satellite data on spatial economic activities. We put together

hree sets of geo-spatial data for understanding urban expansion and
rowth. The Global Urban Boundary (GUB) dataset is adopted to iden-
ify changes in city boundaries over time. The GUB data are derived

from the global artificial impervious area (GAIA) data and provide
built-up areas and city boundaries in 2010, 2015, 2018 within our
study period (Li et al., 2020). The original resolution of GUB data is
30-meter and we sum up the build-up areas in each county, by which

e measure changes in city size and urban expansion.
We also collect high-resolution data on night lights and population

ensities. The former is from the National Tibetan Plateau Data Center,
efined based on the Defense Meteorological Satellite Program (Zhang

et al., 2021). The latter is a gridded dataset from the WorldPop Spa-
tial Demographic Data and Research. We pair urban boundaries with
annual data on light and population, enabling us to separately exam-
ine economic activities in always-urban areas, always-rural areas, and
rural–urban fringes. The always-urban areas are within the 2010 city
boundaries; the rural–urban fringes are the spatial differences between
2018 and 2010 city boundaries; and the always-rural areas are outside
the 2018 city boundaries. Figure A1 provides an illustrative example.
Within each space in each county, we calculate the annual average
nightlights and population densities. In addition, for constructing con-
trol variables, we use land ruggedness from the NASA’s Shuttle Radar
Topography Mission.

Weather data. Station-based daily weather records are from the
hina Meteorological Data Service Centre, hosted by the China Mete-

orological Administration. Weather information includes temperature,
precipitation, sunshine hours, relative humidity and wind speed from
010 to 2018. There were 699 monitoring stations in operation dur-
ng the time period of our study. We employ an inverse-distance
eighting (IDW) strategy to interpolate weather information to each

ross-sectional unit, using station measurements within 100 miles.
e construct flexible weather variables at the annual level, including

0 ◦C temperature bins, 5 mm precipitation bins, cumulative sunshine
uration, average wind speed and relative humidity.
Data merging. The data structure differs across datasets. For

county-level data, the county centroid is spatially linked with the SNWT
project map. For village-level and household-level data, we use the
locations of the villages. In the final samples for analyses, the county-
level data span 2010–2018, and the household-level and village-level
data span 2010–2017. All nominal variables are deflated using a price
index based on 2010. Summary statistics of the main outcome variables
are presented in Table 1, separately for water demand and supply areas.

4 The hierarchy of administrative units from top to down in China is
nation-province-prefecture-county-township-village.
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Table 1
Summary statistics.

Water Demand Sample Water Supply Sample

Obs Mean SD Obs Mean SD

Panel A. Water and GDP (county)
Water coverage (%) 4,500 2.44 5.12 4,776 3.06 6.10
GDP per capita, overall (yuan) 4,500 144 934.15 108 420.30 4,776 120 241.81 81 406.99
GDP per capita, agriculture (yuan) 4,500 117 271.45 212 245.17 4,776 117 569.27 251 880.65
GDP per capita, non-agriculture (yuan) 4,500 166 758.23 151 475.64 4,776 131 920.73 109 959.29

Panel B. Rural development (household)
Income, overall (yuan) 35,226 38 376.05 35 338.52 38,407 46 767.74 44 997.62
Income, agriculture (yuan) 35,226 7322.50 11 012.72 38,407 6741.98 11 103.15
Income, non-agriculture (yuan) 35,226 30 863.54 34 540.94 38,407 39 725.59 44 617.14
Income, local wage work (yuan) 19,391 14 510.19 13 879.63 20,778 15 842.68 15 997.40
Income, non-local wage work (yuan) 20,179 22 761.35 17 453.72 24,523 24 757.86 19 355.01
Consumption (yuan) 35,226 17 828.02 20 640.56 38,407 21 960.29 24 399.54
Bank deposits (yuan) 22,208 36 266.68 44 437.57 24,240 40 390.06 53 688.49
Cash savings (yuan) 26,215 5019.31 9236.19 28,435 5544.96 10 160.24
Draft animals (count) 3,742 0.89 2.75 5,424 1.18 2.97
Powered machines (count) 11,386 1.29 0.95 12,530 1.41 1.13
Family labor (count) 35,226 2.46 1.23 38,407 2.60 1.22
Cultivated land area (mu) 35,226 5.27 5.51 38,407 5.39 5.99

Panel C. Rural development (village)
Total number of labor forces 679 1059.10 852.45 805 1082.32 740.87
Labor share, farm 679 0.45 0.25 805 0.43 0.24
Labor share, non-farm 679 0.55 0.25 805 0.58 0.24
Labor share, migrants (all) 679 0.35 0.19 805 0.42 0.19
Labor share, migrants (out of town) 679 0.35 0.19 805 0.42 0.19
Labor share, migrants (out of county) 679 0.21 0.16 805 0.27 0.18
Labor share, migrants (out of province) 679 0.11 0.13 805 0.16 0.17

Panel D. Urban growth (county)
City size (km2) 2,337 63.53 67.50 2,357 51.97 82.74
Night light, always-urban (brightness) 7,011 3440.92 1410.76 7,073 3223.28 1584.24
Population, always-urban(person/km2) 7,011 2863.77 2542.25 7,073 3661.99 3249.60
Night light, fringe (brightness) 7,011 2455.19 1204.66 7,073 2341.44 1310.60
Population, fringe(person/km2) 7,011 1083.62 1719.55 7,073 1308.95 1457.52
Night light, always-rural (brightness) 7,011 932.66 999.82 7,073 789.09 1093.64
Population, always-rural(person/km2) 7,011 370.01 884.54 7,073 316.65 736.57

Panel E. Additional controls (county)
Ruggedness index 7,011 26.30 29.50 7,073 47.49 47.09
Land area (km2) 7,011 1366.54 1287.52 7,073 1518.51 1180.38
Population density in 2010 (person/km2) 7,011 862.36 2085.12 7,073 1057.74 2901.11
Sunshine duration (hour) 7,011 2083.65 349.75 7,073 1747.05 318.70
Relative humidity (%) 7,011 65.84 8.07 7,073 72.33 6.42
Wind speed (m/s) 7,011 2.25 0.50 7,073 2.03 0.52
Temperature (degree) 7,011 13.83 3.00 7,073 15.74 2.63
Precipitation (mm) 7,011 836.39 395.44 7,073 1176.63 475.56
t

a
r
a

T

4. Empirical design

4.1. DID and event study

We employ a difference-in-difference (DID) approach to study the
effects of the SNWT project. Several features of this project make the
DID a suitable empirical strategy in this context. The project’s design
and construction are commanded and coordinated by the central gov-
ernment under a least-cost consideration. Most of the water-receiving
areas are thus determined by the least-cost routes with their boundaries
largely shaped by geographical and hydrological factors. In addition,
both lines start to operate at clear time points, offering sharp treatments
to the affected regions.

The regression equation is specified as follows,

𝑦𝑖𝑡 = 𝛽 𝑇 𝑟𝑒𝑎𝑡𝑖 × 𝑃 𝑜𝑠𝑡𝑡 + 𝜃(𝑋𝑖 × 𝑡) + 𝛾 𝑊𝑖𝑡 + 𝛼𝑖 + 𝜆𝑡 + 𝜖𝑖𝑡, (1)

where 𝑦𝑖𝑡 represents outcomes of interest in unit 𝑖 in year 𝑡. The
cross-sectional unit varies across different data structure. In our main
regressions on water coverage and local economic growth, 𝑖 represents
a county. For additional analyses on household behaviors and village
outcomes, 𝑖 represents a household and a village, respectively. 𝑇 𝑟𝑒𝑎𝑡𝑖
is a dummy variable that equals one if unit 𝑖 is located in the treated
5 
group and zero if in the control group. 𝑃 𝑜𝑠𝑡𝑡 equals one in years that
he project starts its operation. The middle line and the east line started

to function in 2015 and 2014, respectively. The coefficient 𝛽 measures
the SNWT project’s treatment effect.

Our design also follows the inconsequential unit approach, pioneered
in Chandra and Thompson (2000), by excluding the Beijing–Tianjin–
Hebei (BTH) region from the sample. While the routes and engineering
design are under a least-cost consideration, the BTH region is the key
target of the SNWT project, which could pose identification challenges,
s economic outcomes in that region may change for reasons other than
eceiving the project water. By excluding the BTH region, the remaining
reas receive the project water ‘‘by chance’’, strengthening the causal

interpretation of our DID estimates.
Previous studies have shown that large water infrastructures may

incur differential impacts on agriculture between water demand and
supply areas (e.g. Duflo and Pande, 2007; Strobl and Strobl, 2011).

herefore, we examine treatment effects in water demand and supply
regions separately. From the official project release, we obtain exact
locations of areas receiving and supplying water, as shown in Fig. 1.
Panel A first depicts the four key regions: the demand and supply areas
of the east and middle lines, respectively. These four regions have
clearly defined boundaries, i.e., the regions do not overlap with each
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other spatially, and thus alleviate the concern of multiple treatments. In
the baseline estimation, we pool the two lines together, and we further
explore heterogeneities between the lines in later sections.

Panels B and C illustrate the treated and the control groups in
the analysis of water demand and supply areas, respectively. In the
baseline regression, the control group comprises the areas surround-
ing the treated ones, with a distance buffer of 300 km. For water
emand areas, our group definition designates 287 treated counties

and 595 control counties. Notably, the control group for water demand
reas excludes counties within water supply areas. For water supply
reas, the corresponding numbers are 139 treated counties and 755
ontrol counties, respectively. The control group for water supply areas
xcludes counties in water demand areas.

While the control counties are spatially close to the treated counties,
hey may still have slightly different characteristics. In Tables A2 and
3, we show a balance test between the treated and control groups
ased on a set of economic, geographic, and environmental indices

in 2010. The comparison suggests that the two groups may differ in
land geography and demography. Concerning that these differences
could lead to differential growth paths, we include additional control
variables.

The vector 𝑋𝑖 includes a set of time-invariant characteristics. For
ounty-level regression, we consider ruggedness, county size and pop-
lation density (in 2010); for household-level regressions, we further
dd total labor force and total area of land in operation (in 2010).
onsidering potentially differential trends across places with different
eographic and demographic features, these time-invariant variables
re interacted with linear time trends. Besides, in the vector 𝑊𝑖𝑡 we
nclude a host of weather conditions in flexible function forms because
hey are likely to directly affect local outcomes, particularly those
ssociated with agriculture. These weather variables include 10 ◦C tem-
erature bins, 5 mm precipitation bins, cumulative sunshine duration,
verage wind speed and relative humidity.

A causal interpretation rests on the identifying assumption that,
conditional on controls and fixed effects, the outcomes of interest in
different locations would change similarly were they not affected by
the project. To bolster the validity of this parallel trend assumption,
we implement an event study in the following form,

𝑦𝑖𝑡 =
∑

𝑗
𝛽𝑗 ×𝐷𝑖,𝑡−𝑗 + 𝜃(𝑋𝑖 × 𝑡) + 𝛾 𝑊𝑖𝑡 + 𝛼𝑖 + 𝜆𝑡 + 𝜖𝑖𝑡, (2)

where 𝐷𝑖,𝑡−𝑗 is an indicator of cross-sectional unit 𝑖 being treated in year
− 𝑗. We consider all available years before and after the treatment in
his event study and regard the year immediately preceding the opera-
ion year as the reference. This setup not only allows us to evaluate the

pre-trend, but also facilitates estimating the project’s dynamic effects.
All other variables are defined as in Eq. (1).

We employ the standard two-way fixed effects, where 𝛼𝑖 captures
time-invariant characteristics of the cross-sectional units and 𝜆𝑡 absorbs
the common arbitrary time shocks. Standard errors are clustered at
he county level. We also report additional two-way standard errors

clustered at both the county and province-by-year levels as well as the
Conley standard errors with linear decaying weights for observations
within a 100 km radius.

4.2. Robustness checks

We assess the robustness of our baseline results through a battery
of checks. Specifically, we explore alternative DID estimators, augment
our analysis with a richer set of fixed effects and additional controls,
and examine various tailored control groups.

Staggered treatments. Recent advances in applied econometrics
ave pointed out potential biases of conventional DID estimates under

a two-way fixed-effect specification (Roth et al., 2023). This issue is
most worrisome when the treatments are staggered. Our case features
 sharp timing in the operation of each line, and the operation of
6 
middle line followed immediately after the east line. While the stag-
ered issue is unlikely to bias our baseline estimates, we nonetheless
ssess the robustness of our baseline DID estimates by implementing

an alternative estimator proposed in Callaway and Sant’Anna (2021).
o further bolster the robustness of our findings, we conduct additional
egressions where we set the treatment year as 2014 for both lines.
Controlling province-by-year fixed effects. In the baseline speci-

ication, we use the year fixed effects to address time-varying common
shocks. However, one concern arises regarding the variation of certain
ime-specific shocks across different regions. For instance, agricultural
nd resource conservation policies are effective in some provinces but
ot others. We address this concern by employing a richer set of
rovince-by-year fixed effects. This conservative specification absorbs

any arbitrary time shocks that are specific to each province, and the
identifying variation comes from within-province comparisons across
counties.

Controlling for water quality. We posit that improved water
upply is the primary reason contributing to agricultural growth in the
emand areas. However, in addition to raising quantity of the water,
he transferred water is also regulated to meet higher quality standard.
o assess the sensitivity of our estimates to water quality, we include
ater quality as an additional control variable at the county-by-year

evel. We derive this quality measure by implementing an inverse-
distance weighting strategy over readings collected by the monitors
urrounding the county centroid. If our baseline estimates remain
nchanged after controlling for water quality, it implies that changes

in water quality are unlikely to drive the project effects.
Using alternative buffer zones. Our baseline estimation uses a

buffer of 300 km to define the control group. This choice ensures
hat the control units are both spatially close to the treated areas and
omparable while also maintaining a sufficient number of observations
n the control group. However, it is essential that our estimation results
emain robust across different distance cutoffs. To verify the robust-
ess of our results, we examine various cutoff distances and report
dditional results using a 200 km buffer for the control group.
Removing areas adjacent to the transfer lines. Another concern

with the sample selection relates to the areas adjacent to the transfer
lines. These adjacent areas may have experienced changes in their land-
cape and encountered additional regulation due to the construction
f the routes. This concern is particularly relevant for the middle line
ecause the majority of this line is connected by newly established
pen channels and pipe culverts. To address this concern, we conduct

a regression using the baseline specification but exclude the samples
within 10 km from the lines.

Restricting to places near water bodies. Different from the mid-
le line, the east line adopts an engineering approach that connects
xisting water bodies from south to the north. This feature may poten-

tially weaken the identification if areas near water bodies are inherently
different from those farther away. We address this concern by limiting
ur control units to areas close to rivers. Specifically, we only consider
he cross-sectional units within 10 km from the level-4 rivers as the
ontrol units in this analysis.
Using a matching method. In addition to using the tailored control

groups above, we apply a propensity score matching (PSM) to improve
the comparability between the treated and control units. Specifically,
we calculate propensity scores by considering covariates including
uggedness, county size, population density, temperature, precipitation,

relative humidity, and sunshine hours in 2010. We adopt a 1:3 match-
ng ratio to ensure balanced comparison without sacrificing the number

of observations. The PSM procedure is conducted separately for the
water demand and supply areas. We illustrate the common support,
bias reduction, and balancing achieved through the PSM process in
Figure A2.
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Table 2
Effects of the SNWT project on water and GDP in water demand areas.

Water Local GDP per capita

Coverage Overall Agriculture Non-agri

(1) (2) (3) (4)

Treat × Post 0.065*** 0.060*** 0.073*** −0.018
(0.010) (0.013) (0.014) (0.014)

All controls Y Y Y Y
County FE Y Y Y Y
Year FE Y Y Y Y
Observations 4,500 4,500 4,500 4,500

Notes: This table shows the effects of the SNWT project on surface water coverage and GDP measures in water demand areas
from estimating equation (1). The unit of analysis is county by year. Dependent variables are in logarithms. All regressions
contain county fixed effects and year fixed effects, as well as a full set of control variables including flexible weather variables
and trend-interacted geographic and demographic variables. Standard errors in parentheses are clustered at county level.
Significance: ***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1.
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5. Economic impacts on water demand areas

5.1. Water relocation and local economies

We first examine how the SNWT project affects local water abun-
ance in water demand areas from estimating Eq. (1). Column (1) in

Table 2 reveals that the project significantly expands water bodies in
he water-receiving regions. With the full set of climatic, geographic,
nd demographic controls, the SNWT project increases water coverage
y 6.5% in water demand areas, relative to their neighboring counties
naffected by the project. Although this estimate cannot be directly
ranslated into the exact amounts of water, it is sizable enough to
llustrate a substantial improvement in local water supply, consistent
ith official reports on the actual water relocation efforts.5

Panel A of Fig. 2 plots the event-study results on water coverage
stimated from Eq. (2). The pre-period coefficients are close to and
ot statistically different from zero. This pattern lends support to the

parallel-trends assumption and indicates that, conditional on other
controls, water coverage within and outside of the water demand areas
changes in a parallel way if unaffected by the SNWT project. The
post-period coefficients corroborate our baseline DID result both in
terms of their estimated magnitude and statistical significance. These
estimates also suggest that water resource gradually increases in the
water-receiving areas following the completion of the project.

Next, we explore how this resource windfall affects the local econ-
my. Column (2) in Table 2 reports the effect of the SNWT project
n county-wide GDP per capita. This estimate indicates that the SNWT

project significantly boosts local economy in the demand areas, leading
to a 6.0% increase in GDP per capita. A breakdown by sector in columns
3) and (4) reveals that the project’s impact on economic growth is

primarily driven by agriculture. Specifically, the marginal impact on
gricultural GDP per capita is significant, amounting to 7.3%, while
ts impact on non-agricultural GDP is close to zero and not significant.

This suggests that non-agricultural sectors have not harvested the water
benefit during the period of our study.

Panels B-D of Fig. 2 show the event-study plots of the project’s im-
acts on the overall and sectoral GDP per capita. Across all panels, we

observe no significantly diverging pre-trends, and the post-period co-
efficients are consistent with our baseline DID estimates. The project’s
impacts on local agriculture increase gradually, as the magnitude of
he post-period coefficients grows over time. This observation can be
ttributed to several reasons. First, as our earlier results suggest, it takes
ime for the local hydrological system to adjust to the increased water

5 One example can be found from the governmental release https://www.
ov.cn/xinwen/2022-12/12/content_5731608.htm.
7 
availability. Additionally, farmers may have been continuously making
adjustments and investments to fully reap the benefits of the transferred
water, thereby leading to a progressive growth in agriculture over time.

Fig. 3 summarizes a battery of robustness checks. First, the statis-
tical significance is not compromised when using more conservative
clustering strategies such as two-way clustering and Conley clustering.
Second, the estimates are consistent when using the Callaway and
Sant’anna estimator or setting 2014 as the single treatment year. Third,
the estimates are robust to adding more demanding province-by-year
fixed effects, and controlling for water quality. Lastly, the results are
also insensitive to using alternative control groups, when we define the
control units as (i) those within a 200 km buffer, (ii) those netting out
the areas adjacent to the water lines, (iii) those close to rivers, and
(iv) those chosen by the propensity-score matching method. These tests
underscore the reliability of our results.

5.2. Agriculture and rural development

The agricultural growth observed in water demand areas indicates
that local agriculture has capitalized the water benefits. Left panel in
igure A3 provides additional results to illustrate the changes within
ocal agriculture. Specifically, yields of major crops are enhanced by
bout 6%–9%, accompanied by significant improvements in irrigation.
here is no evidence of land expansion such that the growth is likely
ealized through intensification. Consistent with this intensification,

machinery usage also increases. One counter-intuitive finding is the
ecline in fertilizer usage, despite its conventional role as a complement

to water in agricultural production. We attribute this result primarily
to the government’s explicit requirement to curtail fertilizer application
along the transfer lines, mitigating potential pollution of the water
along the lines.6

Given the significant boost in agriculture resulting from the project’s
water, how does this resource windfall affect rural households that
heavily rely on agriculture? Column (1) in Table 3 shows that the
project significantly increases rural household income by 5.5% in water
demand areas. Columns (2) and (3) in Table 3 indicate that this income
effect is predominantly driven by agricultural activities. Specifically,
the project increases agricultural income by 9.4% but has no signifi-
ant effect on non-agricultural income. Moreover, based on additional
nformation on wage-work income for a subset of the sample, we find
o evidence that the project increases economic returns from local or

6 This requirement is documented in the Construction Yearbook of the SNWT
Project, 2018. This publication includes a section on ‘‘securing water quality’’,
which outlines various explicit arrangements aimed at enhancing water quality
along the transfer lines.

https://www.gov.cn/xinwen/2022-12/12/content_5731608.htm
https://www.gov.cn/xinwen/2022-12/12/content_5731608.htm
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Fig. 2. Event Study of the SNWT Project Effects in Water Demand Areas
Notes: This figure presents the event-study plots of the SNWT project on water coverage and GDP measures in the demand areas from estimating Eq. (2). Data span over 2010–2018.
The blue dots are the estimated coefficients and the black bars are 95% confidence intervals.
Fig. 3. Robustness Tests of the SNWT Project Effects in Water Demand Areas
Notes: The figure presents effects of the SNWT project on surface water coverage and GDP measures in water demand areas from various robustness checks. The points indicate
point estimates and the associated bars indicate 95% confidence intervals.
non-local wage work. Taken together, these household-level estimates
echo the county-level estimates on GDP per capita, indicating that
the project’s benefits in the demand areas primarily stem from the
improvement in agriculture.

The accumulated wealth from agricultural growth has directly trans-
lated into a rise in living standards. Column (1) in Table 4 shows that
aggregate household expenditures increase by 5.3%. We also examine
8 
induced changes in these rural households’ financial and productive
assets by separating the intensive and extensive margins, utilizing
relevant information collected in the household survey. Columns (2)-
(4) show that, although the project does not significantly affect the
likelihood of rural households holding formal or informal assets, it
leads to a 6.7% higher bank deposits and a 9.2% higher cash savings
for the asset holders. Similarly, columns (5)-(7) indicate that, along
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Table 3
Project effects on household income in water demand areas.

Overall Agri Non-agri

Wage work

Local Non-local
(1) (2) (3) (4) (5)

Treat × Post 0.055*** 0.094*** 0.013 0.016 0.018
(0.013) (0.029) (0.015) (0.026) (0.029)

All controls Y Y Y Y Y
Household FE Y Y Y Y Y
Year FE Y Y Y Y Y
Observations 35,226 35,226 35,226 19,391 20,179

Notes: This table shows the effects of the SNWT project on rural household income in
water demand areas from estimating equation (1). The unit of analysis is household
by year. Dependent variables are in logarithms. All regressions contain household
ixed effects and year fixed effects, as well as a full set of control variables including
ousehold-level labor force counts and cultivated land, flexible weather variables, and
rend-interacted geographic and demographic variables. Standard errors in parentheses
re clustered at the county level. Significance: ***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1.

the intensive margin, rural households expand their investments into
roductive assets, such as draft animals and powered machines, related
o agricultural activities. These results suggest that the project likely
einforces the agricultural sector in water demand areas, which may
nhibit additional incentives for rural-to-urban migration.

Based on a set of village-level labor measures, we show that the
agricultural boom brought by the project water indeed refrains rural
abor from leaving the farm sector. Columns (1)–(3) in Table 5 show

that, the project does not affect total labor in the rural villages, nor does
t induce movement of rural labor from the farm to non-farm sector.

Columns (4)–(7) also indicate that the project does not induce signif-
icant out-migration. We support these results by providing additional
estimates based on the county-level employment statistics. In Table A4,
we show that the project does not significantly affect employments or
employment shares in agriculture, manufacture, and service.

5.3. Spillover and urban growth

The growth in local agriculture can have profound implications on
nearby cities. On the one hand, the resource windfall in agriculture
may increase the value of agricultural land and push up the opportunity
osts of urban expansion. For rural individuals, the agricultural growth
ould also disincentivize rural-to-urban migration, potentially slowing
own the development of nearby cities. On the other hand, wealth ac-
umulation through rural development may create the demand effects,
ttracting migrants and boosting urban economy. It is essentially an
mpirical question to pin down the direction and extent of the spatial
pillover from rural to urban areas in this context.

In column (1) in Table 6, we report the project’s effect on city sizes
governed by the boundaries of built-up areas. The estimate shows that
the project is associated with a 6.9% expansion of city areas in water
emand areas. For a round-shaped town of the average size in our

sample, this increase would translate into an expansion of 4.26 square
kilometers, equivalent to pushing out the city boundary by nearly 100
meters in the radius. Columns (2) and (3) in Table 6 show that, in the
always-urban areas, the project leads to city growth by a 4.2% change
n night lights and a 3.1% change in population densities. The rural–
rban fringe has experienced even larger growth. Columns (4) and (5)
how that the increases in night lights and population densities amount
o 6.1% and 3.9%, respectively. In contrast, we find no significant
hanges in night lights and population in the always-rural areas, as
hown in columns (6) and (7). Pairing these night-light estimates with
he elasticities obtained from Henderson et al. (2012), these would

imply a 1–1.5% increase in GDP in the urban and fringe areas.7

7 Henderson et al. (2012) show that a best fit elasticity of measured GDP
growth with respect to nightlight growth is roughly 0.3.
 l

9 
A seemingly counter-intuitive result is that the project induces pop-
ulation growth in the urban and fringe areas but our earlier estimates
o not show a significant increase in rural out-migration in the demand

areas. It is likely that this urban population growth mainly comes from
places outside the project’s demand areas. As shown in our earlier
results, the project brings a significant increase in rural consumption
in the demand areas, which constitutes a strong demand effect that
nvigorates urban sectors. The attraction of these urban sectors in
he demand areas is stronger for rural migrant workers coming from
illages outside the demand areas, where agricultural returns are not
ositively affected by the project. Alternatively, it could also be that the
igrants drawn from these villages are relatively small in numbers such

hat our earlier estimates of non-farm and migrant shares are positive
ut not statistically significant.

6. Economic impacts on water supply areas

6.1. Water relocation and local economies

In the water-supply areas, we do not find evidence of shrinking
ater bodies. Column (1) in Table 7 shows that the effect of SNWT

project on water coverage is positive while this estimate is not signifi-
cant. In the middle line, there is a mechanical effect of water expansion
owing to the intentional scale-up of the Danjiangkou reservoir. In the
ast line, although no dam construction is involved, the transferred

water does not account for a large share of its local water resources
since the east line sources from water-abundant regions. Despite no
negative impacts on water coverage in the supply areas, the water-
sourcing arrangements of the two lines have de facto moved water
ut of these regions and imposed further restrictions that eventually
ransform the local economy.

Columns (2)-(4) in Table 7 indicate that, although the project does
not affect the overall GDP per capita, it significantly alters the relative
contributions of the farm and non-farm sectors. Specifically, in water
supply areas, the project leads to a 5.6% decrease in agricultural
GDP per capita, but this recession is offset by a 5.4% increase in
non-agricultural GDP per capita.

Fig. 4 plots the event-study results on water coverage and GDP mea-
sures, estimated from Eq. (2), confirming that there are no differential
trends in the pre-treatment period. Panels A and B illustrate that the
project brings no significant impacts on water coverage and overall
GDP per capita. However, Panels C and D show clear diverging patterns
in the post-treatment effects. After the project starts to transfer water
out of the supply areas, agricultural GDP per capita continues to decline
while non-agricultural GDP per capita steadily increases. These event-
study results align with the DID estimates in both economic magnitude
and statistical significance.

To ensure the robustness of our findings regarding the SNWT
project’s effects on water coverage and GDP measures in the supply
areas, we provide additional robustness checks. Fig. 5 shows that our
estimates are consistent when using different clustered standard errors,
using alternative estimators, adding province-by-year fixed effects,
controlling for water quality, and adopting alternative control groups
based on various strategies.

6.2. Agriculture and rural development

The decline in agricultural GDP per capita in water supply areas
s also reflected in significant reductions in both crop outputs and
nputs, as illustrated in the right panel of Figure A3. Specifically, the
roject leads to 5%–6% lowered yields of the major crops, accompanied
y reductions in irrigated areas, fertilizer application, and machinery
se at a similar magnitude. The project also induces a roughly 8.7%
ontraction in the cultivated land, partly due to the flooding of arable
and for scaling up the Danjiangkou reservoir.
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Table 4
Project effects on household consumption and assets in water demand areas.

Consumption Financial Assets Productive Assets

Holding Bank Cash Holding Draft Powered
(0/1) Deposits Savings (0/1) Animals Machines

(1) (2) (3) (4) (5) (6) (7)

Treat × Post 0.053*** 0.005 0.067*** 0.092*** 0.017 0.075*** 0.032***
(0.013) (0.006) (0.025) (0.023) (0.011) (0.022) (0.006)

All controls Y Y Y Y Y Y Y
Household FE Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y
Observations 35,226 35,226 22,208 26,215 35,226 3,742 11,386

Notes: This table shows the effects of the SNWT project on rural household consumption and assets in water demand areas from estimating
equation (1). The unit of analysis is household by year. Dependent variables are in logarithms in columns (1), (3), (4), (6), (7), and dummy
variables in columns (2) and (5). All regressions contain household fixed effects and year fixed effects, as well as a full set of control variables
including household-level labor force counts and cultivated land, flexible weather variables, and trend-interacted geographic and demographic
variables. Standard errors in parentheses are clustered at the county level. Significance: ***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1.
Table 5
Project effects on rural labor composition in water demand areas.

Total Labor shares

Num Farm Non-farm Migrant worker

All Out of Out of Out of
Town County Province

(1) (2) (3) (4) (5) (6) (7)

Treat × Post 0.023 −0.016 0.016 0.016 0.008 0.008 −0.003
(0.033) (0.027) (0.027) (0.022) (0.023) (0.016) (0.010)

All controls Y Y Y Y Y Y Y
Village FE Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y
Observations 679 679 679 679 679 679 679

Notes: This table shows the effects of the SNWT project on village-level rural labor outcomes in water demand areas from estimating equation
(1). The unit of analysis is village by year. Dependent variables are in logarithms in column (1), and ratios between 0-1 in columns (2)-(7).
All regressions contain village fixed effects and year fixed effects, as well as a full set of control variables including flexible weather variables
and trend-interacted geographic and demographic variables. Standard errors in parentheses are clustered at the county level. Significance:
***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1.
Table 6
Project effects on urban expansion and growth in water demand areas.

City size Always-urban Rural–urban Always-rural

Light Pop Light Pop Light Pop
(1) (2) (3) (4) (5) (6) (7)

Treat × Post 0.069*** 0.042*** 0.031*** 0.061*** 0.039*** 0.005 −0.001
(0.014) (0.008) (0.004) (0.009) (0.004) (0.008) (0.003)

All controls Y Y Y Y Y Y Y
County FE Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y
Observations 2,337 7,011 7,011 7,011 7,011 7,011 7,011

Notes: This table shows the effects of the SNWT project on urban-related outcomes in water demand areas from estimating equation (1).
Column (1) examines the project’s effect on urban built-up areas using data in 2010, 2015 and 2018. Columns (2)-(7) examine the project’s
effect on night lights and population densities using data from 2010 to 2018. The unit of analysis is county by year. Dependent variables are
in logarithms. All regressions contain county fixed effects and year fixed effects, as well as a full set of control variables including flexible
weather variables, and trend-interacted geographic and demographic variables. Standard errors in parentheses are clustered at the county level.
Significance: ***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1.
r

How would this agricultural decline affect rural development? In
Table 8, columns (1)-(2) show that the project has increased household
ncome by 6.1%, despite a reduction in agricultural income by 7.8%.
his is due to a substantial 9.3% increase in non-agricultural income, as

ndicated in column (3), which more than compensates the lost profits
rom agricultural activities. Based on the additional data on wage-work
eturns, columns (4)-(5) further suggest that both local and non-local
age work contribute to this growth in non-agricultural income.

Unlike rural households in water demand areas, households in the
water supply areas do not increase consumption despite income growth.
Column (1) in Table 9 shows that the project’s effect on household
10 
consumption is not statistically significant and economically negligible.
Although column (2) suggests that the project does not change the
likelihood of holding financial assets, columns (3) and (4) show that,
for asset holders, the increased income primarily goes into savings.
Specifically, the project triggers a 8.3% increase in bank deposits and
a 8.9% increase in cash savings. Along with these changes, columns
(5)-(7) show that households tend to decrease agricultural productive
assets.

The rural labor composition in water supply areas have also expe-
ienced meaningful changes. Columns (1)-(3) in Table 10 show that,

although the total number of rural labor remains largely unchanged,
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Fig. 4. Event Study of the SNWT Project Effects in Water Supply Areas
Notes: This figure presents the event-study plots of the SNWT project on water coverage and GDP measures in the supply areas from estimating Eq. (2). Data span over 2010–2018.
The blue dots are the estimated coefficients and the black bars are 95% confidence intervals.
Fig. 5. Robustness Tests of the SNWT Project Effects in Water Supply Areas
Notes: The figure presents effects of the SNWT project on surface water coverage and GDP measures in water supply areas from various robustness checks. The points indicate
point estimates and the associated bars indicate 95% confidence intervals.
there is a notable labor shift from farm to non-farm sectors. Specif-
ically, propelled by the project, farm labor in rural villages declines
by 7.6 percentage points, offset by an increase in non-farm labor.
These village-level estimates of labor reallocation are also supported
11 
by additional results based on county-level statistics, as shown in Table
A5.

The non-farm labor share includes both local and non-local employ-
ments in non-farm sectors. Non-farm workers that are not employed
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Table 7
Effects of the SNWT project on water and GDP in water supply areas.

Water Local GDP per capita

Coverage Overall Agriculture Non-agri

(1) (2) (3) (4)

Treat × Post 0.030 −0.004 −0.056*** 0.054***
(0.020) (0.016) (0.020) (0.018)

All controls Y Y Y Y
County FE Y Y Y Y
Year FE Y Y Y Y
Observations 4,776 4,776 4,776 4,776

Notes: This table shows the effects of the SNWT project on surface water coverage and
GDP measures in supply areas from estimating equation (1). The unit of analysis is
county by year. Dependent variables are in logarithms. All regressions contain county
fixed effects and year fixed effects, as well as a full set of control variables including
lexible weather variables and trend-interacted geographic and demographic variables.
tandard errors in parentheses are clustered at county level. Significance: ***𝑝 < 0.01,
*𝑝 < 0.05, *𝑝 < 0.1.

Table 8
Project effects on household income in water supply areas.

Overall Agri Non-agri

Wage work

Local Non-local
(1) (2) (3) (4) (5)

Treat × Post 0.061*** −0.078** 0.093*** 0.070** 0.100***
(0.017) (0.031) (0.022) (0.028) (0.027)

All controls Y Y Y Y Y
Household FE Y Y Y Y Y
Year FE Y Y Y Y Y
Observations 38,407 38,407 38,407 20,778 24,523

Notes: This table shows the effects of the SNWT project on rural household income in
water supply areas from estimating equation (1). The unit of analysis is household
y year. Dependent variables are in logarithms. All regressions contain household
ixed effects and year fixed effects, as well as a full set of control variables including
ousehold-level labor force counts and cultivated land, flexible weather variables, and
rend-interacted geographic and demographic variables. Standard errors in parentheses
re clustered at the county level. Significance: ***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1.

locally have migrated out of the local village, typically for seasonal or
temporary jobs. The Hukou (household registration) system in China
assigns each individual either an agricultural or a non-agricultural
(urban) Hukou tied to a specific locality. Despite gradual reforms of
the system over years, rural residents still face substantial challenges
in permanently migrating to cities as Hukou conversion is restricted.
Consequently, rural migrants normally have limited access to local
public services and social protections in cities.

Columns (4)–(7) in Table 10 illustrate that a substantial portion of
he non-farm labor growth can be attributed to an increasing number of
igrant workers, some of whom traveling long distances for non-farm
ork. In particular, the share of migrant workers whose destinations
re outside their home province increases by 4.1 percentage points.
iven the institutional barriers in Hukou conversion, it is very likely

hat most of these migrant workers are still affiliated with their original
ukou, that they still have family members (especially the children and

he elderly) living in their Hukou-affiliated locations, and that they send
remittances back and regularly return to their home villages during
vacations.

The source of income growth determines that the project’s impact
n rural consumption in the water supply areas can be very different
rom that in the water demand areas. In the demand areas, rural
onsumption increases with total income growth driven by agricul-
ural income boost. In the supply areas, rural consumption remains
tagnant even though non-farm income growth leads to a higher total
ncome. This inconsistency is likely due to different expectations on
12 
future income, shaped by institutional barriers in permanent migration.
Households in water demand areas tend to consume more because the
project is expected to bring sustainable resources that would persis-
tently enhance the agricultural revenue flows. In contrast, households
in water supply areas tend to save more because a large share of
their income is remittance, involving higher uncertainties in the long
un given that rural migrants lack sufficient social protections in the
ities (Chen, 2018). These precautionary behaviors may have further

implications on how the SNWT project generates rural-to-urban spatial
spillover in water supply areas.

6.3. Spillover and urban growth

We follow the same procedure in Section 5.3 and examine urban-
related outcomes in water supply areas. Column (1) in Table 11 shows
hat the project does not induce a significant expansion of the city

boundaries. However, economic activities and populations still grow
within the cities. In the always-urban regions, night lights and popula-
tion densities increase by 2.8% and 2.2%, respectively, as reported in
columns (2) and (3). The results are consistent with our earlier findings
of increased out-migration from rural villages, especially given that the
roject has lowered the agricultural returns in the supply areas. The
indings are also consistent with existing studies showing that water
upply areas are rich in wetlands, lakes, rivers, and other internal water
odies such that the restrictive geography limits the growth in urban
oundaries (Saiz, 2010).

Regions outside the always-urban regions experience declines in
both night lights and populations. Specifically, in the rural–urban
fringe, the project reduces night lights and population by 2.9% and
2.3%, respectively. The associated reductions in the always-rural re-
gions are even more pronounced, amounting to 4.7% and 2.9%, respec-
tively. Our earlier finding of increased out-migration from rural villages
contributes to the economic declines outside the always-urban regions.
Additionally, unlike in the demand areas, the stagnant growth of rural
consumption in the supply areas, stemming from income uncertainties,
is insufficient to generate the demand effects that are strong enough to
boost local economies.

7. Heterogeneity across two lines

The two lines of the SNWT project feature distinct construction
approach. The middle line sources water from the Danjiangkou reser-
voir by raising the height of an existing dam and flooding originally
lanted cropland. It delivers water northward using a gravity-based

approach. In contrast, the east line sources water from the downstream
of the Yangtze River and connects various water bodies along the
route. Although both transferring water over long distances, the former
resembles a dam system while the latter functions like a water-transfer
network. This difference in infrastructure construction may generate
differential impacts between the two lines. To formally assess this
potential heterogeneity, we adapt the baseline regression as follows.

𝑦𝑖𝑡 = 𝛽 𝑇 𝑟𝑒𝑎𝑡𝑖×𝑃 𝑜𝑠𝑡𝑡+𝛿 𝑇 𝑟𝑒𝑎𝑡𝑖×𝑃 𝑜𝑠𝑡𝑡×𝑀 𝑖𝑑 𝐿𝑖𝑛𝑒𝑖+𝜃(𝑋𝑖×𝑡)+𝛾 𝑊𝑖𝑡+𝛼𝑖+𝜆𝑡+𝜖𝑖𝑡,

(3)

where 𝑀 𝑖𝑑 𝐿𝑖𝑛𝑒𝑖 indicates the middle line of the project. By construc-
ion, 𝛽 represents the project effect on the east line, and 𝛿 characterizes
he differential effect on the middle line as opposed to that of the east

line.
Water demand areas. As shown in Table A6, we find no evidence

that the project leads to differential impacts on water coverage, eco-
omic growth, rural development and labor market outcomes between

the two lines in water demand areas. In panels A–D in Table A6, all
the estimated 𝛽 coefficients align with the earlier baseline estimates,
and the estimated 𝛿 coefficients are generally small and statistically in-

significant. This homogeneity is expected because the essential benefits,
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Table 9
Project effects on household consumption and assets in water supply areas.

Consumption Financial Assets Productive Assets

Holding Bank Cash Holding Draft Powered
(0/1) Deposits Savings (0/1) Animals Machines

(1) (2) (3) (4) (5) (6) (7)

Treat × Post 0.007 0.005 0.083*** 0.089** −0.031 −0.017 −0.038***
(0.014) (0.006) (0.025) (0.037) (0.036) (0.018) (0.012)

All controls Y Y Y Y Y Y Y
Household FE Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y
Observations 38,407 38,407 24,240 28,435 38,407 5,424 12,530

Notes: This table shows the effects of the SNWT project on rural household consumption and assets in water supply areas
from estimating equation (1). The unit of analysis is household by year. Dependent variables are in logarithms in columns
(1), (3), (4), (6), (7), and dummy variables in columns (2) and (5). All regressions contain household fixed effects and year
fixed effects, as well as a full set of control variables including household-level labor force counts and cultivated land, flexible
weather variables, and trend-interacted geographic and demographic variables. Standard errors in parentheses are clustered
at the county level. Significance: ***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1.
Table 10
Project effects on rural labor composition in water supply areas.

Total Labor shares

Num Farm Non-farm Migrant worker

All Out of Out of Out of
Town County Province

(1) (2) (3) (4) (5) (6) (7)

Treat × Post 0.007 −0.076*** 0.076*** 0.072** 0.070** 0.057** 0.041***
(0.038) (0.025) (0.025) (0.029) (0.030) (0.027) (0.012)

All controls Y Y Y Y Y Y Y
Village FE Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y
Observations 805 805 805 805 805 805 805

Notes: This table shows the effects of the SNWT project on village-level rural labor outcomes in water supply areas from
estimating equation (1). The unit of analysis is village by year. Dependent variables are in logarithms in column (1), and
ratios between 0-1 in columns (2)-(7). All regressions contain village fixed effects and year fixed effects, as well as a full set
of control variables including flexible weather variables and trend-interacted geographic and demographic variables. Standard
errors in parentheses are clustered at the county level. Significance: ***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1.
Table 11
Project effects on urban expansion and growth in water supply areas.

City size Always-urban Rural–urban Always-rural

Light Pop Light Pop Light Pop
(1) (2) (3) (4) (5) (6) (7)

Treat × Post 0.016 0.028*** 0.022*** −0.029*** −0.023*** −0.047*** −0.029***
(0.017) (0.008) (0.006) (0.010) (0.007) (0.011) (0.004)

All controls Y Y Y Y Y Y Y
County FE Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y
Observations 2,357 7,073 7,073 7,073 7,073 7,073 7,073

Notes: This table shows the effects of the SNWT project on urban-related outcomes in water supply areas from estimating
equation (1). Column (1) examines the project’s effect on urban built-up areas using data in 2010, 2015 and 2018. Columns
(2)-(7) examine the project’s effect on night lights and population densities using data from 2010 to 2018. The unit of analysis
is county by year. Dependent variables are in logarithms. All regressions contain county fixed effects and year fixed effects, as
well as a full set of control variables including flexible weather variables, and trend-interacted geographic and demographic
variables. Standard errors in parentheses are clustered at the county level. Significance: ***𝑝 < 0.01, **𝑝 < 0.05, *𝑝 < 0.1.
h
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i.e., transferred water, in the demand areas do not differ in nature, even
though the two lines are constructed differently.

The only discernible heterogeneity we find in the demand areas is
the extent of growth in always-urban and rural–urban fringe areas. The
stimates in panel E in Table A6 indicate that, although the project
eads to urban growth in the demand areas of both lines, the positive
ffects on night light and population densities are stronger in the
iddle line. This effect may reflect the additional benefit of electricity
rovision powered by the dam system even though electricity gener-
tion is not a primary function of the project. Other factors may also
 e

13 
contribute to a stronger agglomeration effect upon receiving the project
water but we are unable to explicitly characterize. Future research
is still needed to gain a deeper understanding on the driver of this
eterogeneity.
Water supply areas. Heterogeneities clearly emerge when we ex-

amine the project effects in water supply areas. As summarized in Table
7, our baseline results on local economy, rural development, labor
elocation, and urban dynamics are mostly driven by the middle line.

The coefficients 𝛽 estimated from Eq. (3) are generally modest in their
conomic and statistical significance, while the coefficients 𝛿 are highly
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significant and directly aligned with our baseline estimates.
This stark difference can be attributed to the different engineering

pproaches adopted by the two lines. In the middle line, raising the dam
nd expanding the reservoir lead to the flooding of preexisting crop
ields in the supply areas. Moreover, strict restrictions on agricultural

activities are imposed in this area to guarantee both the quantity
and quality of the water transferred northward. These actions have
substantially weaken agricultural activities in the supply areas of the
middle line. At the county level, agricultural GDP per capita decreases;
at the household level, agricultural income reduces; at the village level,
rural labor shifts out of agriculture.

The agricultural decline in the supply areas of the middle line is ac-
companied by sectoral reallocation. The supply areas have experienced
 nearly 10% increase in non-agricultural GDP per capita. This estimate
ligns closely with our household-level findings on non-agricultural
ncome and our village-level findings on the non-farm labor share. The
rban booms and rural busts in night lights and population densities
cho these dynamics.

It is worth noting that the middle line’s implementation has in-
volved active governmental actions. Anecdotal evidence shows that
ocal governments ordered and financially incentivized rural house-
olds in certain areas to migrate.8 Given the simultaneity in agricultural

declines and governmental actions, we cannot fully disentangle the
specific mechanisms in shaping the sectoral reallocation. But our results
are still informative especially since these two mechanisms often occur
jointly in such circumstances.

In contrast to the middle line, the results above do not apply to the
east line’s supply areas, since the east line relies on a distinct engineer-
ing design and its source area is blessed with richer water endowments.
These features determine that local agriculture faces less disruption
from the project. Since agricultural declines do not occur in the supply
areas of the east line, no consequent labor and sectoral adjustments
follow, and their further spillovers on urban growth become minimal.

8. Concluding remarks

Climate change is expected to worsen the disparities in water dis-
tribution across regions. Taking advantage of the South-to-North Water
Transfer Project in China, we examine the effects of long-distance water
ransfers on water resources, rural development, and urban growth.
his project allows us to examine the heterogeneous effects across
ater-receiving and water sourcing areas. It also offers us a unique
pportunity to contrast the potentially differential effects of a dam-

based system (the middle line) and a network-based system (the east
line) for long-distance water transfers. We find similar effects of the
project on the water-receiving areas across the two lines. The project
significantly enhances water supply and boosts agriculture. It also
induces urban growth and expansion, particularly in the rural–urban
fringe.

In the water-sourcing areas, the dam-based approach leads to sub-
stantial agricultural loss and increases rural out-migration. Although
economic activities in core urban areas still grow, non-urban areas and
rural–urban fringes experience declines. The network-based approach,
in contrast, results in minimal impacts on the water-sourcing areas.
This heterogeneity underscores the differential outcomes resulting from
dopting different engineering designs for long-distance water transfer.

However, we note that, given the project’s recent launch, our estimates
likely only reflect short-run impacts. The long-term effects remain
unclear, representing an important question for future research.

8 See a report from http://news.cntv.cn/china/20120130/103027.shtml.
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